

TECHNICAL MEMORANDUM

Phase II Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon

То:	Chris Einmo, PE / Marion County	
From:	Jesse Hall, GIT / GSI Water Solutions, Inc. Matt Kohlbecker, RG / GSI Water Solutions, Inc. Jason Keller, RG / GeoSystems Analysis, Inc.	OREDO DA
CC:	Peter Olsen, PE / Keller Associates, Inc.	EXP: 5/2011
	Pamela Villarreal, PE / Keller Associates, Inc.	
	Brian Nicholas / Marion County	
	Dave Kinney / City of Mill City	
	Russ Foltz / City of Mill City	
	Kari Low / Commonstreet Consulting	
	Mary Camarata / Department of Environmental Quality	
Date:	September 12, 2023	

This Technical Memorandum (TM), prepared by GSI Water Solutions, Inc. (GSI) and GeoSystems Analysis, Inc. (GSA), summarizes the second phase of a subsurface characterization to evaluate the feasibility of treated wastewater infiltration in Gates and Mill City, Oregon.

1. Introduction

This section summarizes background information about the treated wastewater infiltration project in the Santiam Canyon, including a project overview (Section 1.1) and an overview of the Phase II Subsurface Characterization in Gates and Mill City (Section 1.2).

1.1 Project Overview

The North Santiam Sewer Authority (NSSA) is planning to dispose of treated wastewater by infiltration. Two infiltration facilities are planned—one in the Gates/Mill City area and another in the Detroit/Idanha area. Infiltration facilities will be comprised of rapid infiltration basins and will be authorized by Water Pollution Control Facilities (WPCF) permits from the Oregon Department of Environmental Quality (DEQ).

A phased approach is being used to evaluate infiltration feasibility in the Gates/Mill City area. The phases include:

- Phase I. Excavation of test pits and infiltration testing to characterize shallow soils in four study areas.
- Phase II. Construction of a single monitoring well and aquifer testing to characterize deep soils in the three study areas that are considered to be the most favorable for infiltration based on the results of Phase I.
- Phase III. Construction of two additional monitoring wells, advancement of two temporary borings within the footprint of the planned infiltration basin area, and aquifer testing in the study area that is most favorable to infiltration based on the results of Phase II.

1.2 Phase II Investigation in the Gates/Mill City Area

Permitting and design of an infiltration basin requires characterization of soils and groundwater to evaluate whether infiltration capacity at a site is sufficient to meet the projected volume of wastewater that will be infiltrated. In 2023, GSI developed the Santiam Canyon Treated Wastewater Infiltration Evaluation Subsurface Characterization Work Plan (the Work Plan) (GSI and GSA, 2023a) to guide Phase I and Phase II of the subsurface characterization. An addendum to the Work Plan will be prepared to guide Phase III of the characterization.

In the Gates/Mill City area, the Phase I Subsurface Characterization was completed in March of 2023 at the four study areas shown in Figure 1. The Phase II Subsurface Characterization was completed in July of 2023 at study areas GM1, GM4, and GM5, which were most favorable to infiltration based on the results of the Phase I Subsurface Characterization (GSI and GSA, 2023b).

The objective of the Phase II Subsurface Characterization is to collect data that can be used to select one of the three study areas for the Phase III Subsurface Characterization. This TM summarizes the: (1) Phase II subsurface investigation at sites GM1, GM4, and GM5 that consisted of installing groundwater monitoring wells and conducting aquifer tests to estimate aquifer permeability, and (2) analytical groundwater modeling to estimate the volume of wastewater that can be infiltrated at each study area based on data collected during the field event. Monitoring well locations are shown in Figure 2a (study area GM1), Figure 2b (study area GM4), and Figure 2c (study area GM5).

This TM summarizes methods (Section 2) and results (Section 3) of the Gates/Mill City Phase II Subsurface Characterization. Finally, this TM provides conclusions and recommendations (Section 4).

2. Methods

This section describes methods used during the Phase II Subsurface Characterization to: (1) locate subsurface utilities (Subsection 2.1), (2) construct monitoring wells (Subsection 2.2), (3) collect samples for analysis of soil physical properties (Subsection 2.3), (4) collect samples for analysis of groundwater and wastewater quality (Subsection 2.4), (5) conduct a slug test to determine aquifer hydraulic conductivity (Subsection 2.5), and (6) estimate the infiltration capacity at each site (Subsection 2.6).

2.1 Utility Locating

Areas chosen for monitoring wells were located and cleared for subsurface utilities by Pacific Northwest Locating, LLC on May 5th, 2023. No utilities were identified near proposed monitoring well locations.

2.2 Monitoring Well Construction and Development

Groundwater monitoring wells were constructed at sites GM1, GM4, and GM5 within the project boundary provided to GSI by Keller Associates. Monitoring well objectives are: (1) to identify potential restrictive layers at depth, (2) collect soil samples for analysis of physical properties, (3) collect groundwater quality samples,

and (4) to test aquifer permeability. Monitoring well borings were drilled with a track-mounted Terra Sonic 150cc Compact Crawler rotosonic drilling rig operated by Holt Services of Vancouver, Washington. Monitoring well borings were advanced to approximately 20 feet below the water table. Drilling dates, tooling methods, and total monitoring well depths are provided in Table 1.

Well ID	Drilling Date(s) ¹	Drill Tooling	Total Depth (feet)
GM1-MW1	5/19/2023 - 5/22/2023	6-inch casing, 4-inch core barrel	40
GM4-MW1	5/17/2023 - 5/18/2023	6-inch casing, 4-inch core barrel	45
GM5-MW1	5/15/2023 - 5/16/2023	6-inch casing, 4-inch core barrel	75

Table 1. Overview of Monitoring Well Drilling.

Notes

(1) Does not include well completion activities.

Once monitoring well construction was completed, wells were developed using a Waterra Pump System ® with foot valve and surge block. Wells were pumped and surged until at least ten borehole volumes had been removed, turbidity levels in the well dropped below 100 nephelometric turbidity units (NTUs), and water quality parameters stabilized in accordance with Environmental Protection Agency (EPA) well development guidance (Striggow et al, 2008).

2.3 Soil Physical Properties Logging and Sampling

During drilling, GSI personnel continuously logged soils from each borehole in general accordance with the visual-manual method of the Unified Soil Classification System (USCS) (ASTM, 2016). In addition, the following soil physical properties were measured during the Phase II Subsurface Characterization:

Saturated Vertical Hydraulic Conductivity, Particle Size Distribution, and Specific Gravity. Soils were continuously sampled from each monitoring well boring. A subset of the soil samples, selected to be representative of the range of soil lithologies observed in the boring, was submitted to GSA laboratories for analysis of vertical saturated hydraulic conductivity (K_{sat}) by ASTM Method D5856-95 (ASTM, 1995), particle size distribution by ASTM Method D6913-17 (ASTM, 2017a) and ASTM Method D7928-17 (ASTM, 2017b) (wet sieve and hydrometer methods), and specific gravity by ASTM Method D854-14 (ASTM, 2014). A summary of soil property sampling is presented in Table 2.

Well ID	Depth (feet bgs)	Analysis Performed	
	7.5 - 10	Ksat; particle size distribution; specific gravity	
GM1-MW1	15-17.5	K _{sat}	
	22.5-25	K _{sat} ; particle size distribution	
	15-17.5	K_{sat} ; particle size distribution; specific gravity	
GM4-MW1	17.5-20	K _{sat}	
	22.5-25	K _{sat} ; particle size distribution	
	10-12.5	K_{sat} ; particle size distribution	
GM5-MW1	20-22.5	K _{sat}	
	50-52.5	K _{sat} ; particle size distribution; specific gravity	

Table 2. Laboratory Analysis of Vertical K_{sat}, Particle Size Distribution, and Specific Gravity.

Notes

ft bgs = feet below ground surface

Bulk Density and Water Content. Each section of soil core (i.e., returned in 2.5 foot long increments) from the monitoring well borings was weighed by GSA personnel in the field. Samples of each soil core were submitted to Oregon State University in Corvallis, Oregon, for measurement of gravimetric water content by ASTM Method D2216-19 (ASTM, 2019). Dry bulk density was calculated from the gravimetric water content and field-measured mass.

2.4 Water Quality Sampling

After monitoring wells were constructed and developed, GSI personnel returned on May 28, 2023, to characterize baseline groundwater quality at each site by sampling groundwater for the suite of contaminants regulated under the Safe Drinking Water Act (SDWA). Monitoring wells were sampled using a Waterra Pump System ® with foot valve using EPA low-flow (minimal drawdown) groundwater sampling procedures (EPA, 1996). Groundwater samples were collected from GM1-MW1, GM4-MW1, and GM5-MW1, stored in ice-chilled coolers, and immediately couriered to Edge Analytical Laboratories in Wilsonville, Oregon for analysis.

In addition to water quality sampling at monitoring wells, untreated wastewater from the City's wastewater treatment was sampled on May 2, 2023, by City personnel and submitted to Waterlab Corporation laboratories for analysis of synthetic organic compounds (SOCs), volatile organic compounds (VOCs), metals, and radionuclides. Because samples were collected upstream of treatment, the samples represent raw wastewater quality. The objective of the wastewater quality sampling was to develop a preliminary understanding of the types and concentrations of pollutants in the City's wastewater.

2.5 Aquifer Testing

After monitoring wells were constructed and developed, GSI conducted multiple slug tests (including 'slug-in' and 'slug-out' tests) at each monitoring well to estimate hydraulic conductivity of the shallow aquifer (i.e., horizontal hydraulic conductivity). A solid, tapered tube, or slug, was introduced (slug-in) or removed (slug-out) from each monitoring well to instantaneously raise or lower the water level in the well. A pressure transducer was used to monitor changes in water level. Horizontal hydraulic conductivity was calculated using the Hvorslev method for monitoring wells where the aquifer exhibited an overdamped response (Hvorslev, 1951), and the Springer-Gelhar method for monitoring wells where the aquifer ethe aquifer exhibited an underdamped response (Springer and Gelhar, 1991).

2.6 Infiltration Capacity Modeling

GSA conducted a groundwater mounding analysis to determine the infiltration capacity in study areas GM1, GM4, and GM5. The Zlotnik analytical solution for groundwater mounding (Zlotnik et al, 2017) as applied in MOUNDSOLV (Hydrosolv, 2023) was used to estimate the steady-state groundwater mound that may develop beneath the potential infiltration facilities in response to recharge of treated wastewater. The required model input parameters for a steady-state simulation include recharge rate, recharge basin infiltration area, aquifer saturated hydraulic conductivity, aquifer initial saturated thickness, and horizontal hydraulic gradient. The output of the MOUNDSOLV model is the rise in groundwater levels beneath the infiltration basin.

Simulations were based on the projected year 2045 effluent generation rate of 0.2375 million gallons per day (MGD). For this initial feasibility assessment, the infiltration facility was conservatively assumed to consist of one, square-shaped basin. The size of the infiltration was selected to be sufficiently large to accept the 0.2375 MGD of treated wastewater. The long-term infiltration rate was assumed to be 15 percent of the mean measured near-surface K_{sat} measured by GSA using a single ring infiltrometer with the lateral

divergence correction during the Phase I Subsurface Characterization (GSI, 2023b). The value of 15 percent of K_{sat} was used to account for potential surface clogging (EPA, 1984).

3. Results

This section presents the results of Phase II Subsurface Characterization including monitoring well construction (Subsection 3.1), subsurface geology (Subsection 3.2), saturated hydraulic conductivity (Subsection 3.3), bulk density, gravimetric water content, and specific gravity (Subsection 3.4), water quality sampling (Subsection 3.5), and a groundwater mounding analysis (Subsection 3.6).

3.1 Monitoring Well Construction

Construction information for the monitoring wells installed during the Phase II Subsurface Characterization is summarized in Table 3. Monitoring well locations are shown in Figure 2a (study area GM1), Figure 2b (study area GM4), and Figure 2c (study area GM5). Boring logs showing well construction and soil types are provided in Attachment A.

Table 3. Monitoring Well Construction.

Well ID	Latitude 1	Longitude ¹	Ground Surface Elevation ¹ (ft amsl)	Total Boring Depth (ft bgs)	Depth to Ground- water ² (ft bgs)	Screened Interval (ft bgs)	Slot Size (inches)	Well Diameter and Material	Filter Pack
GM1-MW1	44.751118°	-122.460715°	852	40	15.4	30 - 40	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand
GM4-MW1	44.742539°	-122.472156°	880	40	12.7	30 - 40	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand
GM5-MW1	44.741882°	-122.448286°	1005	76	58.3	65 - 75	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand

Notes

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

Sch. = schedule

(1) Preliminary latitude, longitude, and ground surface elevation determined by Google Earth. A site survey will occur during Phase III.
 (2) At study areas GM4 and GM5, depth to groundwater was measured on June 8, 2023. At study area GM1, depth to groundwater was measured on May 29, 2023.

3.2 Subsurface Geology

Observations of subsurface geology from monitoring well borings are summarized below:

- In each of the three borings, a thin surficial fill layer (less than 3 feet thick) was encountered overlying the Quaternary middle terrace deposits that comprise the primary alluvial geologic unit in the Gates/Mill City area. The Quaternary middle terrace deposits consisted of gravels with varying amounts of sand and fines (i.e., silt and clay) (see boring logs in Attachment A).
- As shown in Table 4, which summarizes laboratory-measured particle size distribution of soils from the monitoring well borings, the soils at study area GM5 consist of significantly more fine material (silt and clay fraction ranging from 16% to 23%) than the soils at study area GM1 and GM4 (ranging from about 4% to 12%). The finer-grained nature of the soils at GM5 based on lab analyses is consistent with the soil classification using the USCS visual-manual method (see boring logs in Attachment A).

Well ID	Depth (feet bgs)	% Gravel (>0.475 mm)	%	% Silt (0.075 mm – 0.002 mm)	% Clay
GM1-MW1	7.5 - 10.0	52.0%	36.2%	11.4%	0.40
	22.5 - 25.0	34.0%	61.3%	4.5%	0.20
CN44 N4/4	15.0 - 17.5	84.0%	11.4%	4.4%	0.20
GM4-MW1 —	22.5 - 25.0	57.0%	33.6%	8.8%	0.6%
	10.0 - 12.5	70.0%	14.0%	11.0%	5.0%
GM5-MW1	50.0 - 52.5	46.0%	30.7%	16.7%	6.6%

Table 4. Percent Gravel, Sand, Silt and Clay.

Notes mm = millimeters

feet bgs = feet below ground surface

3.3 Saturated Hydraulic Conductivity

Saturated hydraulic conductivity is an anisotropic soil property (meaning that hydraulic conductivity may be different in the horizontal and vertical directions) indicating how easily water travels through soil. Due to geologic layering, horizontal hydraulic conductivity may be 10 to 100 times greater in vertical hydraulic conductivity. Vertical saturated hydraulic conductivity was measured in the laboratory based on soil samples collected from monitoring well borings (see Attachment B and discussion in Section 3.3.1) and horizontal saturated conductivity was measured in the field at monitoring wells (see Attachment C and discussion in Section 3.3.2).

3.3.1 Vertical Saturated Hydraulic Conductivity (K_{sat})

Laboratory-measured saturated hydraulic conductivities of soils at study areas GM1, GM4, and GM5 are summarized in Table 5. Because the analyses were conducted on soils above and below the water table, the hydraulic conductivities in Table 5 represent unsaturated zone hydraulic conductivity (soils above the water table) or aquifer hydraulic conductivity (soils below the water table).

The vertical saturated hydraulic conductivity of soil in study area GM5 (geometric mean = 0.0005 feet per day) is significantly lower than the saturated hydraulic conductivity of soil in study area GM1 (10.5 feet per day) and GM4 (9.8 feet per day). The low saturated hydraulic conductivity values in study area GM5 indicate that the deeper unsaturated zone sediments may limit percolation of infiltrated water at this location.

Well ID	Depth (feet bgs)	Vertical K _{sat} (feet/day)	Geometric Mean Vertical K _{sat} (feet/day)	
	7.5 – 10.0 (unsaturated zone)	2.8	_	
GM1-MW1	15.0 – 17.5 (aquifer)	34.0 10.5		
	22.5 – 25.0 (aquifer)	12.2		
	15.0 – 17.5 (aquifer)	17.6	_	
GM4-MW1	17.5 – 20.0 (aquifer)	6.0	9.8	
	22.5 - 25.0 (aquifer)	8.8		
	10.0 – 12.5 (unsaturated zone)	0.0004	_	
GM5-MW1	20.0 – 22.5 (unsaturated zone)	0.0015	0.0005	
	50.0 – 52.5 (unsaturated zone)	0.0002		

Table 5. Summary of Lab-Measured Vertical Saturated Hydraulic Conductivity.

Notes

feet bgs = feet below ground surface

3.3.2 Horizontal Saturated Hydraulic Conductivity (Aquifer Hydraulic Conductivity)

Table 6 summarizes geometric mean horizontal saturated hydraulic conductivity in each study area based on multiple slug tests at each monitoring well. Because the slug tests were conducted in saturated soils below the water table, the hydraulic conductivities in Table 6 represent aquifer hydraulic conductivities. The horizontal saturated hydraulic conductivity in study area GM1 (560 feet per day) is significantly higher than in study area GM4 (3.5 feet per day) and GM5 (33 feet per day).

Table 6. Summary of Field-Measured Horizontal Saturated Hydraulic Conductivity.

Well ID	Geometric Mean Horizontal K _{sat} (feet/day)
GM1-MW1	560.3
GM4-MW1	3.54
GM5-MW1	33.0

The following bullets provide additional information about the slug test analyses:

- As shown in Attachment C, some of the slug tests at MW-1 in study area GM-1 exhibited an underdamped response, indicating very high hydraulic conductivities.
- At MW-1 in study area GM-4, the slug tests exhibited an overdamped response, indicating lower hydraulic conductivities. The water level recoveries follow three trends: (1) an early-time trend that reflects the hydraulic conductivity of the monitoring well's filter pack, (2) a middle-time trend that reflects the hydraulic conductivity of the aquifer, and (3) a late-time recovery that reflects deviation of water level recovery from the theoretical aquifer response. The hydraulic conductivities analyzed by the Hvorslev method represent water level recovery during the middle-time trend (i.e., aquifer response).

At MW-1 in study area GM-5, slug tests indicated an overdamped response. Water levels exhibited two trends: (1) an early-time trend that reflects aquifer permeability and (2) a late-time trend that reflects deviation of water level recovery from the theoretical aquifer response. The hydraulic conductivities analyzed by the Hvorslev method represent water level recovery during the early-time trend (i.e., aquifer response).

3.4 Bulk Density, Gravimetric Water Content, and Specific Gravity

Graphs showing dry bulk density and water content with depth in each boring are provided in Figure 3 (study area GM1), Figure 4 (study area GM4), and Figure 5 (study area GM5) of GSA's technical memorandum in Attachment B. Water content is variable and a function of soil texture (finer texture soil layers generally have greater water content than coarser-textured soil) and position relative to first-encountered groundwater (soil layers closer to or below first-encountered groundwater have greater water content than soil layers further from or above first-encountered groundwater). The water content in soil above first-encountered groundwater (soil groundwater at study area GM5 (ranging from about 7% to 47%) was highly variable relative to the water content at study areas GM1 (ranging from about 5% to 13%) and GM4 (ranging from about 7% to 30%), likely due to the differing layers of fine-textured soil overlaying less fine-textured soils.

Specific gravity results are shown in Table 7. Specific gravity ranged from 2.67 grams per cubic centimeter (g/cm^3) to 2.81 g/cm³.

Well ID	Depth (feet bgs)	Specific Gravity (grams per cubic centimeter)
GM1-MW1	7.5 - 10.0	2.72
GM4-MW1	15.0 - 17.5	2.81
GM5-MW1	50.0 - 52.5	2.67

Table 7. Summary of Specific Gravity.

3.5 Water Quality Sampling

Groundwater and wastewater quality results are provided in Table 8, laboratory reports are provided in Attachment D, and groundwater sampling field forms are included in Attachment E. The following bullets summarize the groundwater quality results. Pollutant concentrations are compared to EPA Maximum Contaminant Levels (MCLs) and EPA Secondary Maximum Contaminant Levels (SMCLs). MCLs are legally-enforceable levels for constituents in drinking water; SMCLs are non-mandatory water quality guidelines to assist public water systems in managing drinking water for aesthetic considerations, including taste, color, and odor. MCLs and SMCLs are used by Oregon's Groundwater Protection Rules to evaluate the significance of a particular pollutant concentration and trigger necessary regulatory action¹.

- VOCs and SVOCs. No VOCs or SVOCs were detected in groundwater. In untreated wastewater, the only VOCs and SVOCs detected were di(2-ethylhexyl)phthalate (9.01 micrograms per liter or ug/L, which is above the EPA MCL of 6 ug/L) and toluene (49.6 ug/L, which is below the EPA MCL of 1,000 ug/L).
- General Geochemical and Inorganic Constituents. The following bullets summarize the quality of untreated wastewater and groundwater for general geochemical and inorganic constituents, many of which are naturally-occurring.

¹ OAR 340 - 040

- In groundwater, concentrations of aluminum, iron, and manganese exceed the EPA MCL or SMCL. The primary source of iron and manganese is likely naturally occurring iron and manganese oxide minerals that are present in alluvial soils of western Oregon, and the aluminum may be related to aluminosilicate minerals (Frank, 1973). Because concentrations of aluminum, iron, and manganese in untreated wastewater are lower than groundwater, infiltration will improve groundwater quality for these constituents.
- Concentrations of zinc, fluoride, gross alpha, gross beta, and combined radium 226/228 are higher in untreated wastewater than in groundwater. With the exception of fluoride, the concentrations in untreated wastewater are below EPA MCLs.
- Nitrate was not detected in untreated wastewater. This is likely because nitrogen is in the form of ammonia prior to treatment.

3.6 Groundwater Mounding Analysis

A technical memorandum summarizing the results of the groundwater mounding analysis performed by GSA is provided in Attachment F. Table 9 summarizes the input parameters used for the mounding analysis.

Table 9. Input Parameters Used for Groundwater Mounding Analysis.

Input Devemptor	GM1	GM4	GM5
Input Parameter	GIVIL	GIVI4	GIVIS
Recharge Rate ¹	0.2375 MGD	0.2375 MGD	0.2375 MGD
Recharge Duration	Continuous	Continuous	Continuous
Infiltration Area ²	0.81 acres	6.23 acres	26.99 acres
Long-Term Infiltration Rate ³	0.90 feet/day	0.12 feet/day	0.03 feet/day
Aquifer Hydraulic Conductivity ⁴	370 feet/day	3.5 feet/day	33.0 feet/day
Depth to Water Table 5	15.4 feet bgs	30.0 feet bgs	58.3 feet bgs
Initial Aquifer Saturated Thickness ⁶	44.6 feet	147 feet	121.7 feet
Initial Horizontal Hydraulic Gradient ⁷	0.0139 feet/foot	0.0139 feet/feet	0.0139 feet/foot

Notes

MGD = Million Gallons Per Day

bgs = below ground surface

(1) Projected 2045 effluent generation rate

(2) Selected to be sufficiently large to accept the 0.2375 MGD of treated wastewater

(3) 15 percent of the mean measured near-surface K_{sat} for the study area (GSI, 2023b)

(4) See Table 6 in Section 3.3.2

(5) Depth to groundwater at study area GM1 was measured on May 29, 2023 at monitoring well GM1-MW1. Depth to groundwater at study area GM5 was measured on June 8, 2023 at monitoring well GM5-MW1. Depth to groundwater at study area GM4 was selected to be 30 feet below ground surface (bgs) because the depth to groundwater is likely between 12.7 feet bgs (measured near the southern edge of the property near a stream at monitoring well GM4-MW1) and 37 feet bgs (measured in the City's Kingwood Well No. 2, LINN 56359, in April 2013).

(6) Estimated from deep borehole logs. In study area GM1, the nearby 60-feet-deep domestic water well LINN 1443 shows that unconsolidated sediments are at least 60 feet thick (60 feet of unconsolidated sediments – 15.4 feet depth to water = 44.6 feet of aquifer). In study area GM4, the nearby 177-feet-deep domestic water well LINN 2588 shows that unconsolidated sediments are at least 177 feet thick (177 feet of unconsolidated sediments – 30 feet depth to water = 147 feet of aquifer). In study area GM5, the water well LINN 55598 shows that unconsolidated sediments are at least 180 feet thick (180 feet of unconsolidated sediments – 58.3 feet depth to water = 121.7 feet).

(7) Horizontal hydraulic gradient determined based on a groundwater elevation contour map developed from the water levels measured by GSI at GM1-MW1, GM4-MW-1, GM5-MW-1 and water levels from the Oregon Water Resources Department.

Table 8

Wastewater Influent and Groundwater Quality Laboratory Analytical Results

Gates/Mill City Phase II Subsurface Characterization

Lab Report	Lab Sample ID	Reference	Lab
GM1	31092	23-15512	Edge Analytical
GM4	31097	23-15516	Edge Analytical
GM5	31106	23-15521	Edge Analytical
WW Influent	1045	CITMILC	Waterlab Corp.

	Sample Lo				Sample Lo	ocation		
	Standard	Criteria	Unit	Untreated Wastewater	GM1	GM4	GM5	
Geochemical and Inorganic Con	stituents							
Antimony (Total)	0.006	MCL	mg/L	< 0.005U	< 0.001U	< 0.001U	< 0.001U	
Aluminum (Total)	0.05 - 0.2	SMCL	mg/L	0.275	0.52	3.8	2.26	
Arsenic (Total)	0.01	MCL	mg/L	< 0.002U	<0.0005U	0.0017	0.00095	
Barium (Total)	2	MCL	mg/L	0.0109	0.0035	0.0211	0.012	
Beryllium (Total)	0.004	MCL	mg/L	< 0.001U	< 0.0003U	< 0.0003U	< 0.0003U	
Cadmium (Total)	0.005	MCL	mg/L	< 0.001U	< 0.00025U	0.00019	< 0.00025U	
Chloride	250	SMCL	mg/L		1.4	2.1	1.4	
Chromium (Total)	0.1	MCL	mg/L	< 0.02U	< 0.001U	0.0019	0.0032	
Copper (Total)	1.3	MCL	mg/L	< 0.002U	0.002	0.0367	0.0142	
Cyanide (Total)	0.2	MCL	mg/L		< 0.005U	< 0.005U	< 0.005U	
Fluoride (Total)	4	MCL	mg/L	7.41	< 0.1U	< 0.1U	< 0.1U	
Iron (Total)	0.3	SMCL	mg/L	0.286	0.62	3.63	2.61	
Lead (Total)	0.015	MCL	mg/L	< 0.001U	0.00027	0.00087	0.0006	
Manganese (Total)	0.05	SMCL	mg/L	< 0.05U	0.0776	0.449	0.106	
Mercury (Total)	0.002	MCL	mg/L	< 0.001U	< 0.0002U	< 0.0002U	< 0.0002U	
Nitrite as N	1	MCL	mg/L	< 0.2U	< 0.01U	< 0.01U	< 0.01U	
Nitrate as N	10	MCL	mg/L	< 0.2U	1.10	0.02	0.46	
Selenium (Total)	0.05	MCL	mg/L	< 0.005U	< 0.001U	< 0.001U	< 0.001U	
Silver (Total)	0.1	SMCL	mg/L	< 0.01U	< 0.0002U	< 0.0002U	< 0.0002U	
Sulfate	250	SMCL	mg/L		1.6	0.9	0.3	
Thallium (Total)	0.002	MCL	mg/L	< 0.001U	< 0.0001U	< 0.0001U	< 0.001U	
Total Dissolved Solids	500	SMCL	mg/L		78	147	84	
Zinc (Total)	5	SMCL	mg/L	0.0547	0.0033	0.0087	0.0059	
Synthetic Organic Compounds ((SOCs)		0,		<u>.</u>			
2, 4-D	0.07	MCL	mg/L	< 0.002U	< 0.0001U	< 0.0001U	< 0.0001U	
2, 4, 5-TP (Silvex)	0.05	MCL	mg/L	< 0.005U	< 0.0001U	< 0.0001U	< 0.0001U	
Alachlor (Alanex)	0.002	MCL	mg/L	< 0.0002U	< 0.00005U	< 0.00005U	< 0.00005U	
Atrazine	0.003	MCL	mg/L	< 0.0003U	< 0.00005U	< 0.00005U	< 0.00005U	
Benzo(a)Pyrene	0.0002	MCL	mg/L	< 0.0001U	< 0.00005U	< 0.00005U	< 0.00005U	
BHC-gamma (Lindane)	0.0002	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U	
Carbofuran	0.04	MCL	mg/L	< 0.004U	< 0.001U	< 0.001U	< 0.001U	
Chlordane	0.002	MCL	mg/L	< 0.0002U	< 0.0001U	< 0.0001U	< 0.0001U	
Dalapon	0.2	MCL	mg/L	< 0.005U	< 0.0005U	< 0.0005U	< 0.0005U	
Di(2-ethylhexyl)adipate								
(adipates)	0.4	MCL	mg/L	< 0.004U	< 0.00005U	< 0.00005U	< 0.00005U	
Di(2-ethylhexyl)phthalate								
(phthalates)	0.006	MCL	mg/L	0.00901	< 0.0001U	< 0.0001U	< 0.0001U	
Dibromochloropropane (DBCP)	0.0002	MCL	mg/L	< 0.0000U	< 0.00002U	< 0.00002U	< 0.00002U	
Dinoseb	0.007	MCL	mg/L	< 0.001U	< 0.0001U	< 0.0001U	< 0.0001U	
Diquat	0.02	MCL	mg/L	< 0.01U	< 0.0004U	< 0.0004U	< 0.0004U	
Ethylene Dibromide (EDB)	0.00005	MCL	mg/L	< 0.0000U	< 0.00002U	< 0.00002U	< 0.00002U	

Endothall	0.1	MCL	mg/L	< 0.01U	< 0.005U	< 0.005U	< 0.005U
Endrin	0.002	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Glyphosate	0.7	MCL	mg/L	< 0.05U	< 0.005U	< 0.005U	< 0.005U
Heptachlor	0.0004	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Heptachlor Epoxide	0.0002	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Hexachlorobenzene (HCB)	0.001	MCL	mg/L	< 0.0003U	< 0.00005U	< 0.00005U	< 0.00005U
Hexachlorocyclopentadiene	0.05	MCL	mg/L	< 0.005U	< 0.00005U	< 0.00005U	< 0.00005U
Methoxychlor	0.04	MCL	mg/L	< 0.0000U	< 0.00005U	< 0.00005U	< 0.00005U
Pentachlorophenol	0.001	MCL	mg/L	< 0.0005U	< 0.00004	< 0.00004	< 0.00004
Picloram	0.5	MCL	mg/L	< 0.005U	< 0.0001U	< 0.0001U	< 0.0001U
Simazine	0.004	MCL	mg/L	< 0.0004U	< 0.00005U	< 0.00005U	< 0.00005U
Total Polychlorinated Biphenyls							
(PCBs)	0.0005	MCL	mg/L	< 0.0002U	< 0.0002U	< 0.0002U	< 0.0002U
Toxaphene	0.003	MCL	mg/L	< 0.0003U	< 0.00 1U	< 0.00 1U	< 0.00 1U
Vydate (Oxamyl)	0.2	MCL	mg/L	< 0.004U	< 0.00 1U	< 0.00 1U	< 0.00 1U
Volatile Organic Compounds (V	OCs)						
1, 1-Dichloroethylene	0.007	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2-Dichloroethane (EDC)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2-Dichloropropane	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2 ,4-Trichlorobenzene	0.07	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 1, 1-Trichloroethane	0.2	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 1, 2-Trichloroethane	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Benzene	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Chlorobenzene							
(monochlorobenzene)	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Carbon Tetrachloride	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
cis-1,2-Dichloroethylene	0.07	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Ethylbenzene	0.7	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Methylene Chloride	0.005	MCL	mg/L		< 0.0005U	< 0.0005U	< 0.0005U
o-Dichlorobenzene (1, 2-DCB)	0.6	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
p-Dichlorobenzene (1, 4-DCB)	0.075	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Styrene	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Tetrachloroethylene (PCE)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Toluene	1	MCL	mg/L	0.0496	< 0.0005U	< 0.0005U	< 0.0005U
Total Xylenes	10	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
trans-1,2-Dichloroethylene	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Trichloroethylene (TCE)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Vinyl chloride	0.002	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Radionuclides							
Alpa, Gross	15	MCL	pCi/L	-5	< 3U	< 3U	< 3U
Beta, Gross	50	MCL	pCi/L	14.8	< 4U	< 4U	< 4U
Radium 226, 228 Combined	5	MCL	pCi/L	2.6	< 1U	< 1U	< 1U
Uranium	30	MCL	mg/L	< 0.0003U	< 0.001U	< 0.001U	< 0.001U
Notes							

Notes

MCL = maximum contaminant level for drinking water -- = not tested Bold = Detected

Constituent Detected above MCL and/or SMCL

* = Radium 226/228 Combo

LRL = lower reporting limit

XXX U = indicates that the constituent was not detected above the method reporting limit of XXX

The model-predicted steady state groundwater mounding results are provided in Table 10. Contour maps showing the predicted rise in groundwater levels are provided in Figure 2 (study area GM1), Figure 3 (study area GM4) and Figure 4 (study area GM5) of GSA's technical memorandum in Attachment F.

Model Output	GM1	GM4	GM5
Maximum Mound Height	1.6 feet above static	47.4 feet above static	5.0 feet above static
Depth to Groundwater	13.8 feet bgs	0 feet bgs	53.3 feet bgs

Table 10. Predicted Mounding During Infiltration.

bgs = below ground surface

Notes

The following bullets summarize the results of the groundwater mounding analysis:

- At study area GM1, the mounding is predicted to be relatively minor (1.6 feet above the static groundwater level) due to the high aquifer hydraulic conductivity at the site. Because the depth to groundwater in study area GM1 is relatively shallow, the depth to the water table is 13.8 feet bgs during infiltration.
- At study area GM4, a relatively large maximum mound height of 47.4 feet above the static groundwater level was predicted due to the low aquifer hydraulic conductivity at the site. In addition, the water table intersected the ground surface. Preferably, the groundwater mound should be at least 10 feet or greater below ground surface to prevent the groundwater from impacting infiltration rates or resulting in the daylighting of groundwater outside of the basin footprint. Additional model simulations by GSA indicated that an infiltration basin would need to be 364,000 acres to meet the 10 feet bgs depth to groundwater criteria, which exceeds the available acreage of available properties near study area GM4.
- At study area GM5, the mounding is predicted to be relatively minor (5.0 feet above the static groundwater level) due to the high aquifer hydraulic conductivity and large area available for an infiltration basin. However, it's important to note that the mounding analysis does not consider the impact of potential low permeability soils above the water table. The Phase II Subsurface Investigation indicated that numerous low-permeability layers are present in the unsaturated zone at study area GM5, which would limit infiltration rate and create perched water conditions above the water table.

4. Conclusions and Recommendations

Based on data collected during the Phase II Subsurface Characterization and mounding analysis, study area GM1 is considered to be the most favorable to infiltration:

- The aquifer hydraulic conductivity (560 feet per day), vertical hydraulic conductivity (10.5 feet per day), and soil types in the unsaturated zone (generally gravels with 5 to 15 percent fines by weight) are the most permeable of three sites evaluated as a part of Phase II.
- Based on MOUNDSOLV modeling (included in Attachment F), study area GM1 is capable of infiltrating the projected 2045 effluent generation rate while maintaining a depth to groundwater of more than 10 feet bgs.

<u>Therefore, we recommend conducting Phase III Subsurface Characterization at study area GM1.</u> At the remaining sites:

- Study Area GM5. Due to low-permeability soil layers in the unsaturated zone that would limit infiltration, we recommend not considering study area GM5 further. Therefore, monitoring well MW-1 at GM5 should be decommissioned.
- Study Area GM4.We recommend retaining study area GM4 as a backup site that could be furtherevaluated if: (1) the Phase III Subsurface Characterization at study area GM1 produces data that indicate the study area is not as favorable to infiltration as indicated by the Phase I and Phase II data, or (2) groundwater contaminant fate and transport modeling indicates that attenuation of constituents in infiltrating wastewater does not meet DEQ standards. While the MOUNDSOLV simulations at GM4 indicate the site cannot infiltrate the target volume of treated wastewater while maintaining water levels deeper than 10 feet bgs, additional data collection may indicate that the aquifer permeability measured at monitoring well MW-1 is not representative of overall site conditions. Specifically, additional slug testing at new monitoring wells may indicate that the aquifer is more permeable in other areas of the study area. It is important to note that we do not consider it to be *likely* that the additional data collection will indicate infiltration is feasible (we only consider it to be possible).

Data collected during the Phase III Subsurface Characterization will be used to complete the following tasks to provide additional information about infiltration basin design and feasibility in study area GM1:

- Install two additional monitoring wells and:
 - Measure the depth to groundwater to calculate a horizontal hydraulic gradient (horizontal hydraulic gradient in MOUNDSOLV currently assumes an "initial horizontal hydraulic gradient" calculated based on water levels from monitoring wells in other study areas and water level collected over many years by the Oregon Water Resources Department).
 - Conduct additional slug tests to evaluate heterogeneity in aquifer hydraulic conductivity (aquifer permeability in MOUNDSOLV is currently based on slug tests at a single monitoring well).
- Install a temporary boring to bedrock to directly-measure the aquifer saturated thickness (the MOUNDSOLV model used an "initial aquifer saturated thickness" assumed from nearby water wells).
- Re-run the MOUNDSOLV model to confirm that an infiltration basin at study area GM1 can infiltrate the projected 2045 effluent generation rate.
- Develop a groundwater fate and transport model to evaluate whether constituents in infiltrating wastewater will be sufficiently attenuated to meet DEQ standards.

5. References

American Society for Testing Materials (ASTM). (1995). Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Ridged-Wall Compaction-Mold Permeameter. (ASTM D5856-95).

American Society for Testing Materials (ASTM). (2009). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). (ASTM D2488-09a).

American Society for Testing Materials (ASTM). (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. (ASTM D854-14).

American Society for Testing Materials (ASTM). (2016). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). (ASTM D2488-09a)

American Society for Testing Materials (ASTM). (2017a). Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. (ASTM D6913/D6913M-17).

American Society for Testing Materials (ASTM). (2017b). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. (ASTM D7928-17).

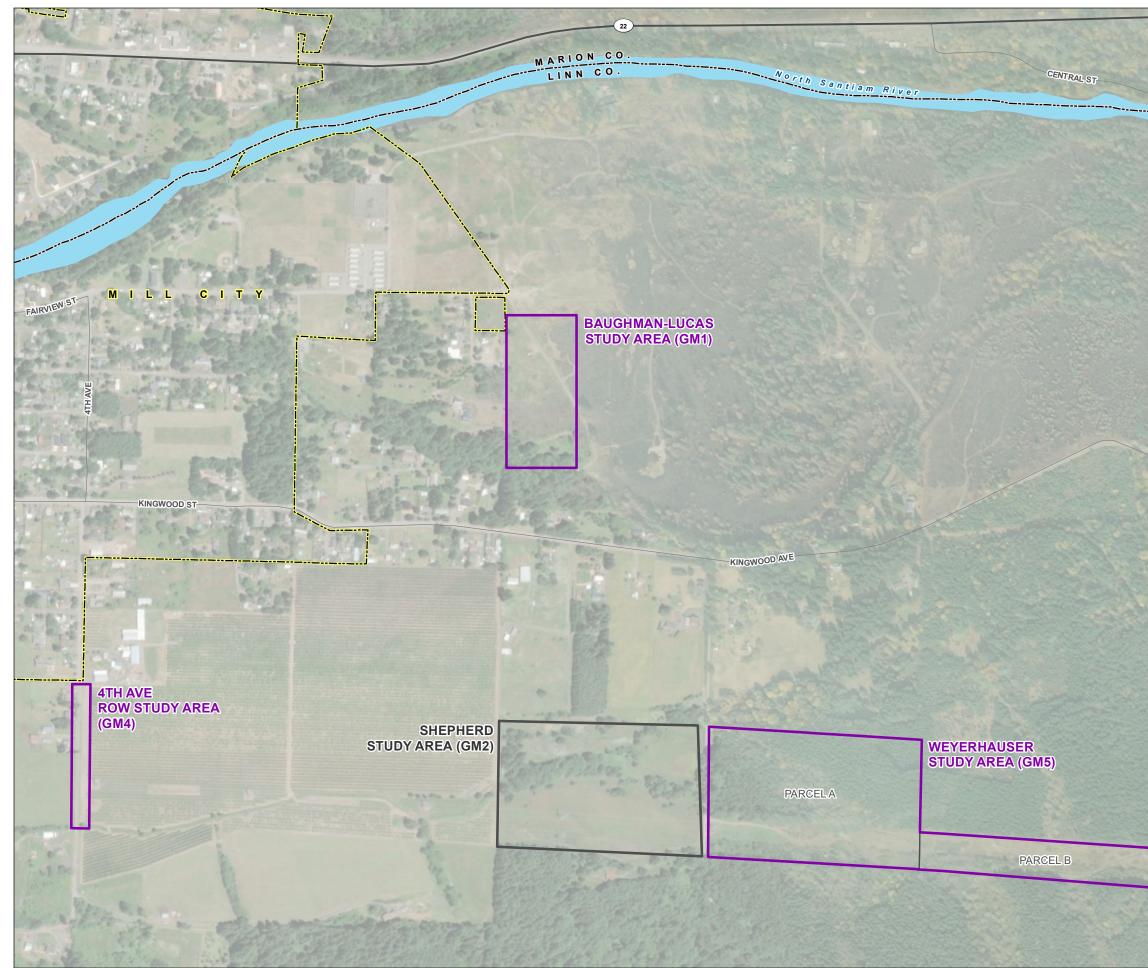
American Society for Testing Materials (ASTM). (2019). Standard Tet Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. (ASTM D2216-19).

Environmental Protection Agency (EPA). (1996, April). *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. (EPA 540-S-95-504). EPA, Office of Research and Development. EPA, Office of Solid Waste and Emergency Response. https://www.epa.gov/sites/default/files/2015-06/documents/lwflw2a.pdf

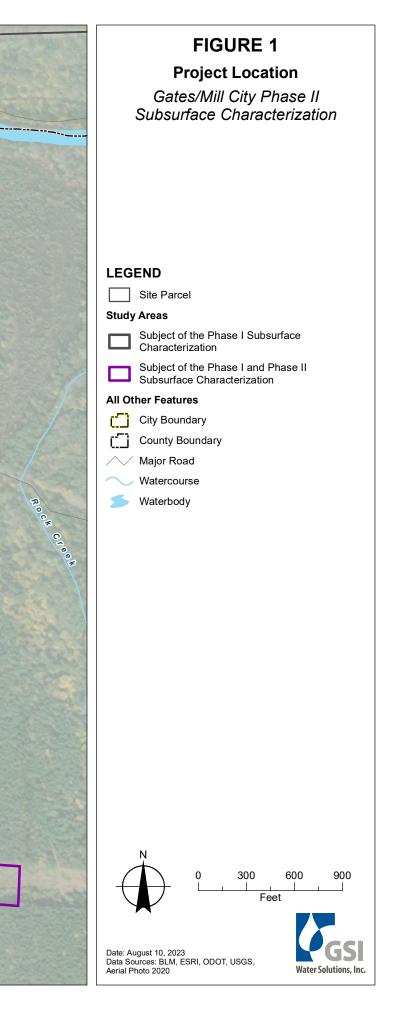
GSI Water Solutions, Inc. and GeoSystems Analysis, Inc. (2023a). Santiam Canyon Treated Wastewater Infiltration Evaluation Subsurface Characterization Work Plan.

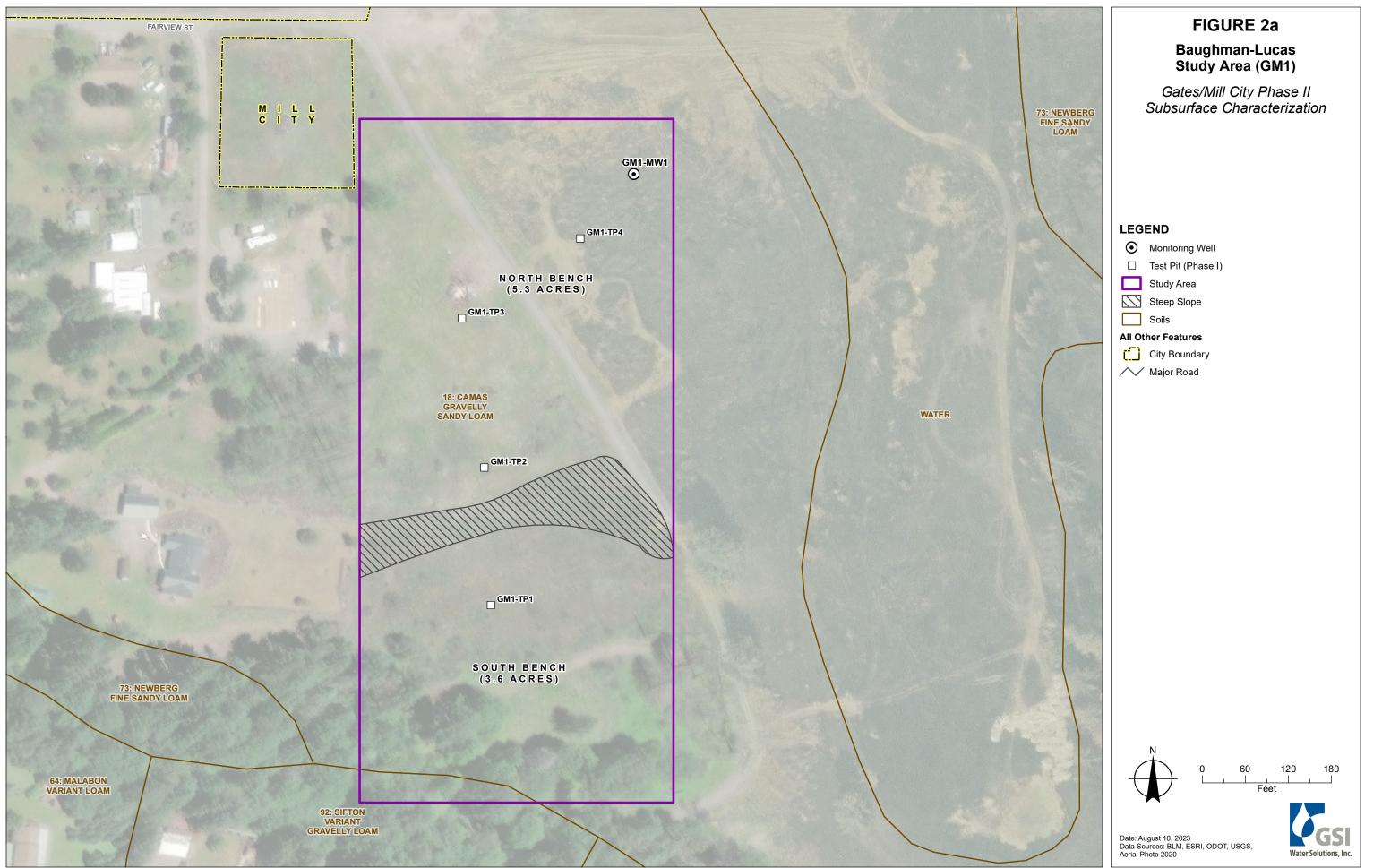
GSI Water Solutions, Inc. and GeoSystems Analysis, Inc. (2023b). Gates/Mill City Shallow Soil Characterization and Infiltration Testing Results, Marion and Linn Counties, Oregon.

Hvorslev, M.J. (1951). *Time Lag and Soil Permeability in Ground-Water Observations*. (Bul. no. 26). U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi


Hydrosolv, Inc. (2023). Moundsolv version 4.0. Available online at the following link: http://www.aqtesolv.com/moundsolv.htm

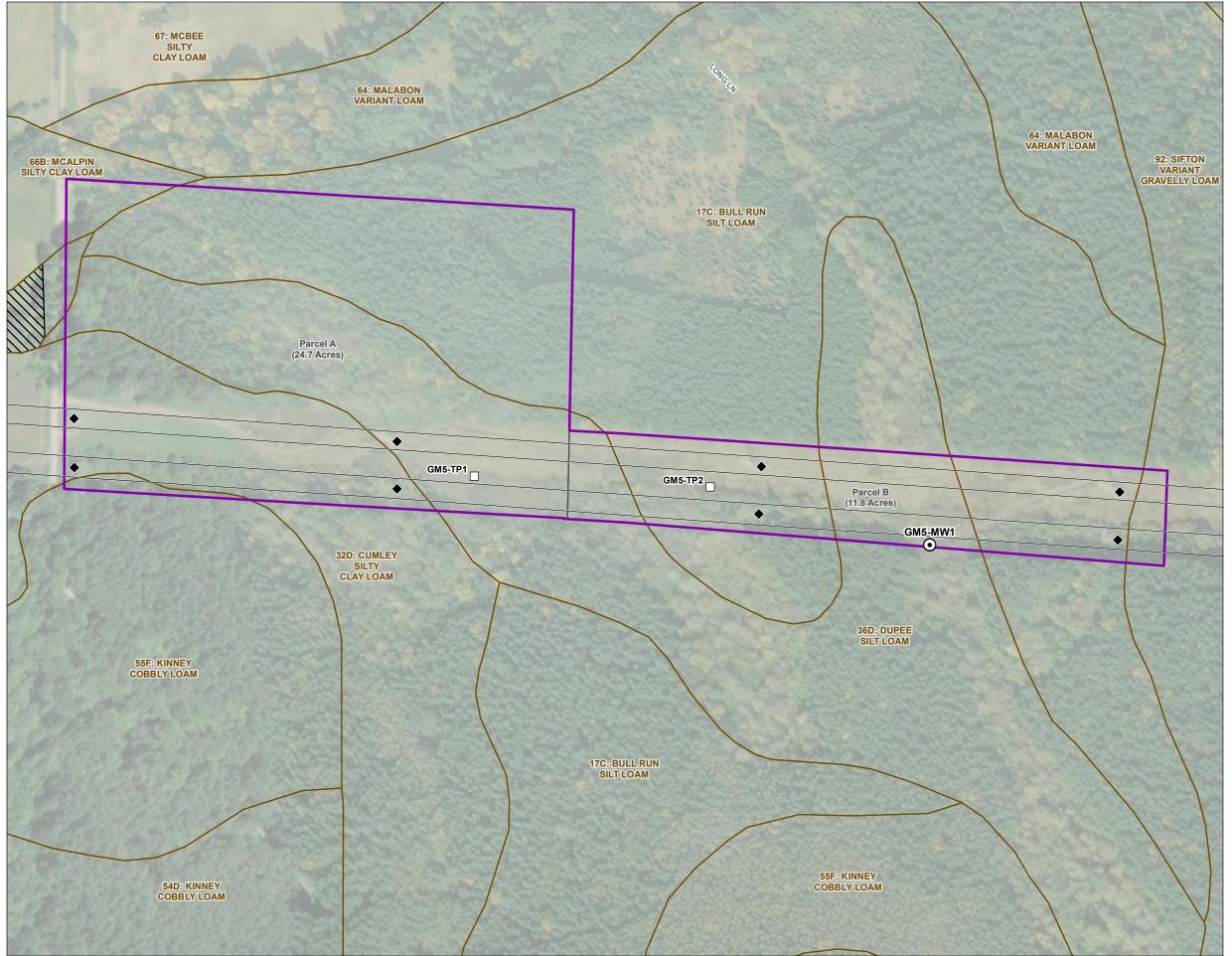
Springer, R. K., and Gelhar, L. W. (1991). *Characterization of Large Scale Aquifer Heterogeneity in Glacial Outwash by Analysis of Slug Tests with Oscillatory Response, Cape Cod, Massachusetts*. U.S. Geological Survey, Water Resources Investment Report 91-4034, pp. 3 – 40.


Striggow, B., Quinones, A., and Ackerman, L. (2008, February). *Design and Installation of Monitoring Wells*. (SESDGUID-101-R0). Environmental Protection Agency, Science and Ecosystem Support Division. https://www.epa.gov/sites/default/files/2014-03/documents/appendix_m_monitor_well_installation.pdf


U.S. Geological Survey (USGS). (2007). *Description of North Santiam River Basin*. (SIR 2007-5178). U.S. Department of the Interior, USGS. https://pubs.usgs.gov/sir/2007/5178/section3.html

Zlotnik, V. A., Kacimov, A., Al-Maktoumi, A. (2017, May). *Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge*. Groundwater, vol. 55, no. 6, pp. 771 – 930.

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure1_Project_Location.mxd, abarry



Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2a_Baughman_Lucas_Site_GM1.mxd, abarry

Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2b_4th_Ave_ROW_Site_GM4.mxd, abarry

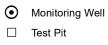

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2c_Weyerhaeuser_Site_GM5.mxd, abarry

FIGURE 2c

Weyerhaeuser Study Area (GM5)

Gates/Mill City Phase II Subsurface Characterization

LEGEND

- Powerline Tower
- Powerline

Site Parcel

Soils

All Other Features

City Boundary

0 125 250 375 Feet

Date: August 10, 2023 Data Sources: BLM, ESRI, ODOT, USGS, Aerial Photo 2020

-ATTACHMENT A-

Monitoring Well Boring Logs

GSI Wate	r Solutions, Inc.	LOC	G ID:	: GM	1-MW1					
PROJECT	PROJECT: Santiam Canyon Infiltration Evaluation				GROUND SURFACE ELEVATION AND DATUM: 851 feet amsl					
BORING LOCATION	Mill City, OR	TOTAL D 40		ft):	DATE STARTED : 5/19/2023					
DRILLING CONTRACTOR	Holt	LOGGED J. Hall			DATE FINISHED: 5/22/2023					
SAMPLING METHOD	SAMPLING METHOD:Continuous CoreDEPTH TO WATER (ft bgs)FIRST: 19.5									
DRILLING METHOD	Sonic		T	1 1						
	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION					
0 1 2 - - - - - - - - - - - - -	 0 - 1.5 ft: Very soft, dark brown, dry, silty GRAVEL with sand (GM), organics, low plasticity, sand is very fine to course, subangular to subrounded, gravel is fine to coarse, subangular to rounded [FILL] 1.5 - 3.0 ft: Medium stiff, dark brown, moist, silty GRAVEL (GM), organics, medium plasticity, sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 3.0 - 4.0 ft: Soft, dark brown to black, dry to moist, silty GRAVEL with sand (GM), odor of charcoal, organics, low plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to medium, subangular to subrounded (QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft; Very soft, dark grey, dry, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft; Very soft, dark grey, dry, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Gray, dry, increase in coarse gravel/cobbles at 6.5 ft 5.0 - 12.0 ft: Very soft, brown to dark brown to grey, dry to wet, well graded GRAVEL with silt and sand (GW-GM), low 		<15 <10 25 30	15 40 35 	Locking Well Cap Monument Sand Fill ""					
8	plasticity, sand is very fine to coarse, subangular to rounded gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	, 75	15							

	GSI Water	Solutions, Inc.	LOO	g id:	GM	1-MW	/1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNI 851 fee		CE ELE	VATION A	ND DATUM:
В	ORING LOCATION:	Mill City, OR	TOTAL I 40	DEPTH (f	t):		DATE STARTED : 5/19/2023
DRILLI	NG CONTRACTOR:	Holt	LOGGEI J. Hall	DBY:			DATE FINISHED: 5/22/2023
SÆ	AMPLING METHOD:	Continuous Core	DEPTH WATER		FIRS 19.		COMPLETED: 14.9
C	ORILLING METHOD:	Sonic					
(feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
12 13 14 16 16 16 17 18 19 20	GW-GM	 Wet at 14.0 ft 12.0 - 18.0 ft: Very soft, dark brown, moist, well graded GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] No return from 15 to 20 ft. Recovered with clean-out. 18.0 - 20.0 ft: Very soft, dark brown, moist, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Wet at 19.5 ft 	80	15	<5 		
21	TNR ///	20.0 - 22.5 ft: NO RETURN					
23-	GW	22.5 - 23.0 ft: Very soft, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to very coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	0 50	100 <50	<5 <5		
24 25	GW	23.0 - 24.0 ft: Very soft, dark brown, moist, well graded GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE	100	0			
25 26 27		DEPOSITS] 24.0 - 25.0 ft: Very soft, dark brown, wet, well graded GRAVEL (GW), low plasticity, gravel is very fine to very coarse, subangular to rounded, cobbles <6 in, subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 25.0 - 26.0 ft: NO RETURN 26.0 - 27.5 ft: Very soft, dark brown, wet, well graded SAND	0	100	 <5		- Sodium Bentonite Slurry
 SI W#	ater Solutions, Inc	(SW), low plasticity, sand is very fine to coarse, subangular to . Portland, OR 503.239.8799		oject N	o. 913.	001	Page 2 of 3

GSI Water Solutions, Inc.					I-MW1	
PROJECT	PROJECT: Santiam Canyon Infiltration Evaluation GROUND SURFACE ELEVATION AND 851 feet amsl					
BORING LOCATION:	Mill City, OR	TOTAL 40	DEPTH (i	ft):		e started : //2023
DRILLING CONTRACTOR:	Holt	LOGGE J. Hall	D BY:			E FINISHED: 2/2023
SAMPLING METHOD:	Continuous Core	DEPTH WATER		FIRS 19.5		PLETED:
DRILLING METHOD:	Sonic	1				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES		BUILT ISTRUCTION
28- 29- 30-	rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 27.5 - 30.0 ft: Very soft, dark brown, wet, well graded GRAVEL (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	100	0	<5		Bentonite Chips
30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.0 - 31.5 ft: Very soft, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	0	100	<5		10-20 Filter Pack 2-Inch 10-Slot
32- 33- 34- GW	Increase in silt/decrease in gravel at 33.0 ft 31.5 - 35.0 ft: Soft, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5		PVC Screen
35- 	35.0 - 36.0 ft: Very soft, dark brown to dark gray, wet, well graded SAND with silt (SW-SM), sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subrounded to rounded [QUATERNARY MIDDLE TERRACE	10	80	10		
37	DEPOSITS] 36.0 - 37.0 ft: Soft, brown to gray, wet, well graded GRAVEL (GW), gravel is fine to coarse, subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	90 	<5	<5		
38- GW, 39-	Increase in cobbles at 38.0 ft 37.0 - 40.0 ft: Soft, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5		
40 41 42 43	Total Depth = 40.0 ft		<u> </u>		╚┶╧╩╌┐	D = 40.0-feet
GSI Water Solutions, In	c. Portland, OR 503.239.8799	P	roject N	lo. 913.0	01	Page 3 of 3

	GSI Water	Solutions, Inc.	LOC	G ID:	: GM4	4-MW1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNE 880 fee		ACE ELEV	ATION AND DATUM:
в	ORING LOCATION:	Mill City, OR	TOTAL D 40	EPTH (i	ft):	DATE STARTED: 5/19/2023
DRILLII	NG CONTRACTOR:	Holt	LOGGED J. Hall	BY:		DATE FINISHED: 5/19/2023
SA	MPLING METHOD:		DEPTH T WATER (FIRS 10	
D	RILLING METHOD:	Sonic			10	12.1
(feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
0 1 1 2 - - - - - - - - - - - - -		 0.0 - 1.5 ft: Soft to medium stiff, dark brown, moist to dry, SILT (ML), organics, rootlets, low plasticity [FILL] 1.5 - 4.0 ft: Medium stiff to stiff, dark brown to red, moist, SILT (ML), high plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 5.0 - 5.5 ft: Medium stiff to stiff, dark brown to red, moist, SILT (ML), high plasticity, gravel is fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 5.5 - 7.5 ft: Medium stiff, dark brown, moist, well graded GRAVEL with silt and sand (GW-GM), low to medium plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, 	0 0 0 40 <5 70	0 0 25 0 20	100 100 35 100 10	Locking Well Cap Monument Sand Fill B" Steel Well Monument Cement Surface Seal Cement Surface Seal Bentonite/Cement Slurry
8- 	GW	[QUATERNARY MIDDLE TERRACE DEPOSITS] 7.5 - 10.0 ft: Very soft, dark brown to gray, dry to moist, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, angular to subrounded, cobbles (<6 inches), low plasticity	80	15	<5	
11	GM	10.0 - 12.0 ft: Very soft, wet, dark brown, silty GRAVEL with sand (GM), sand is fine to coarse, gravel is fine to coarse, subangular to subrounded, cobbles (< 6 inches), subrounded to rounded, low plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	15	25	
_	ater Solutions, Inc		Pro	⊥ oiect N	lo. 913.0	001 Page 1 of 3

GSI Wate	r Solutions, Inc.	LOC	g id	: GM	4-MW1
PROJECT	Santiam Canyon Infiltration Evaluation	GROUNE 880 fee		ACE ELEN	ATION AND DATUM:
BORING LOCATION	Mill City, OR	total e 40)EPTH (ft):	DATE STARTED : 5/19/2023
DRILLING CONTRACTOR	Holt	LOGGED J. Hall	BY:		DATE FINISHED: 5/19/2023
SAMPLING METHOD	Continuous Core	DEPTH T WATER		FIRS 10	T: COMPLETED: 12.1
DRILLING METHOD	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
13- GW	12.0 - 14.0 ft: Very soft, dark brown to gray, dry to moist, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, angular to subrounded, cobbles (<6 inches), low plasticity	80	15	<5	
14 15 16 16	14.0 - 16.0 ft: Medium soft, moist to dry, dark brown to gray, silty GRAVEL with sand (GM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, angular to subrounded, some cobbles (< 8 inches), subrounded to rounded, low plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	20	20	
17- 17- 18- 18-	16.0 - 19.0 ft: Medium stiff, dark brown to gray, moist to wet, well graded GRAVEL (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	90	10	<5	
19 GW-GM 20	19.0 - 20.0 ft: Medium stiff, dry to moist, brown to gray, well graded GRAVEL with silt (GW-GM), low plasticity, very fine to coarse sand, fine to coarse gravel, subangular to rounded gravel, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	10	10	
21- 22- GW	20.0 - 23.0 ft: Soft, dark brown, very wet, well graded GRAVEL with sand (GW), low to medium plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<5	
$23 \xrightarrow{0} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	23.0 - 26.0 ft: Very soft, dark brown, moist, well graded SAND with gravel (SW), low plasticity, sand is fine to coarse, gravel is fine to coarse, subrounded to subangular, cobbles (< 4 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	35	60	<5	
26 27 GW-GM 28	26.0 - 28.0 ft: Very stiff, brown to gray, dry to moist, well graded GRAVEL with silt (GW-GM), trace sand, sand is fine to coarse, gravel is subangular to rounded,cobbles (<8 inches), subrounded to rounded, low to medium plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	90	<5	10	- Bentonite Chips
SI Water Solutions, Ir	28.0 - 29.0 ft: Very soft, brown to gray, dry, silty GRAVEL c. Portland, OR 503.239.8799			lo. 913.0	D01 Page 2 of 3

FROJEC	er Solutions, Inc.	L	OG	i ID:	GM	4-MW	1
PROJEC	T: Santiam Canyon Infiltration Evaluation			SURFA amsl	CE ELEV	ATION AN	ID DATUM:
BORING LOCATIO	N: Mill City, OR	тот <i>і</i> 40	AL DI	EPTH (f	t):		DATE STARTED: 5/19/2023
DRILLING CONTRACTO	R: Holt	LOG J. H	GED all	BY:			DATE FINISHED: 5/19/2023
SAMPLING METHO	D: Continuous Core	DEP	тн то) it bgs)	FIRS 10	T:	COMPLETED: 12.1
DRILLING METHO	D: Sonic	1					
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations		% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
29	with sand (GM), trace ash, sand is fine to coarse, gravel is fine to coarse, subangular to subrounded, cobbles (< 4		60	20	20		
29 	inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 29.0 - 30.0 ft: Soft, dark brown, moist, silty SAND with grave (SM), ash, low to medium plasticity, sand fine to coarse, subangular to subrounded, gravel is fine to coarse,		35	45	20		10-20 Filter Pack
31	subangular to subrounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS 30.0 - 31.0 ft: Soft, dark brown to gray, moist, well graded GRAVEL with silt (GW-GM), low plasticity, sand is fine to		80	10	10		
32	coarse, subangular to rounded, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS 31.0 - 32.5 ft: Soft to stiff, dark brown to gray, dry to moist,	u /	30	60	10		2-Inch 10-Slot PVC Screen
33- 34- 35-	well graded SAND with silt and gravel (SW-SM), low to medium plasticity, sand is fine to coarse, gravel is fine to coarse, rounded to angular, cobbles (< 4 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 32.5 - 35.0 ft: Stiff, gray, moist, SILT with gravel (ML), medium plasticity, sand is fine to coarse, rounded to angular gravel is fine to coarse, rounded to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]		20	10	70		- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
35 GW-GM 36	35.0 - 36.0 ft: Stiff, brown to gray, moist to wet, well graded GRAVEL with silt (GW-GM), trace sand, sand is fine to coarse, gravel is subangular to rounded, cobbles (≤ 8 inches), Increase in moisture with depth [QUATERNARY MIDDLE TERRACE DEPOSITS]		90	<5	10 		
37– 38– GM 39–	36.0 - 40.0 ft: Soft, dark brown, wet, silty GRAVEL with sand (GM), low to medium plasticity, sand is fine to coarse, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	I	50	30	20		
40	Total Depth = 40.0 ft			l			^r •⊢_TD = 40.0 feet
41							
42							
43							
44							
GSI Water Solutions,	nc. Portland, OR 503.239.8799		Pro	ject N	0. 913.(001	Page 3 of 3

	GSI Water	Solutions, Inc. Santiam Canyon Infiltration Evaluation	LOC	G ID:	GM	5-MW1
	PROJECT:	VATION AND DATUM:				
В	ORING LOCATION:	Mill City, OR	1005 feet amsl TOTAL DEPTH (ft): 76 LOGGED BY:			DATE STARTED: 5/15/2023 DATE FINISHED:
DRILLI	NG CONTRACTOR:	Holt	J. Hall		FIRS	5/15/2023
SA	AMPLING METHOD:	Continuous Core	DEPTH T WATER (60	ST: COMPLETED: 57.5
D	ORILLING METHOD:	Sonic				
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
0 1 1 2 3 4 5 1 6 1 7 1 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 0.0 - 3.5 ft: Medium stiff, dark brown, moist, SILT (ML), medium plasticity, rootlets, trace sand is medium to coarse [FILL] 3.5 - 4.5 ft: Stiff, dark brown, moist to dry, SILT (ML), low plasticity, rootlets, charcoal, trace sand is medium to coarse, trace gravel is medium to coarse [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.5 - 6.0 ft: Stiff, dark brown, moist, gravelly SILT with sand (ML), medium to high plasticity, trace charcoal, few sand, fine to coarse, some gravel is fine to coarse, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 6.0 - 8.0 ft: Stiff, dark brown, moist to dry, gravelly SILT with sand (ML), some sand is fine to coarse, gravel is fine to coarse, rounded to subangular, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 8.0 - 12.0 ft: Medium stiff, dark brown, moist, silty GRAVEL 	0 0 <5 20 25		 100 70 60	Locking Well Cap Monument Sand Fill 8" Steel Well Monument Cement Surface Seal 6-inch Borehole Bentonite/Cement Slurry 2-inch Nominal Diameter Schedule 80 PVC Casing
10 11 11	GM · · ·	with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	20	40	
⊥ SI Wa	ater Solutions, Inc	. Portland, OR 503.239.8799	Pro	oject N	0. 913.0	001 Page 1 of 5

	GSI Water	Solutions, Inc.	LOC	g id	: GM	5-MW1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNI 1005 fe			VATION AND DATUM:
ВС	ORING LOCATION:	Mill City, OR	total e 76)EPTH (ft):	DATE STARTED : 5/15/2023
DRILLIN	IG CONTRACTOR:	Holt	LOGGEE J. Hall	BY:		DATE FINISHED: 5/15/2023
SAI	MPLING METHOD:	Continuous Core	DEPTH T WATER		FIRS 60	
DF	RILLING METHOD:	Sonic				
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
12	GM	12.0 - 17.5 ft: Medium stiff to soft, dark brown, moist, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, angular to subangular, gravel is fine to coarse, angular to subangular, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	40	20	
18- 	. GM	17.5 - 19.5 ft: Medium stiff to soft, dark brown, moist to dry, silty GRAVEL with sand (GM), medium to high plasticity, sand is fine to coarse, subrounded to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	20	20	
20- 	GM .	19.5 - 21.0 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	20	40	
22– 23– 24– 25– 26–	GM	21.0 - 33.0 ft: Medium stiff to soft, dark brown, moist to dry, silty GRAVEL with sand (GM), medium to high plasticity, sand is fine to coarse, subrounded to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches),	60	20	20	
 GSI Wat	ter Solutions, Inc		Pr	ject N	lo. 913.(.001 Page 2 of 5

FROJEC	er Solutions, Inc.	LOC	G ID:	GM	5-MW	/1
PROJEC	: Santiam Canyon Infiltration Evaluation	GROUNE 1005 fe	ND DATUM:			
BORING LOCATION	: Mill City, OR	total d 76	EPTH (I	t):		DATE STARTED: 5/15/2023
DRILLING CONTRACTOR	: Holt	LOGGED J. Hall	BY:			DATE FINISHED: 5/15/2023
SAMPLING METHOD	: Continuous Core	DEPTH T WATER (O ft bgs)	FIRS 60	ST:	COMPLETED: 57.5
	: Sonic					
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
28- 29- 30- 31- 32- 33-	subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Large broken cobbles (< 8 inches) at 28.0-feet					
34- 35-	33.0 - 36.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular, cobbles (< 8 inches), angular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<15		
36 GM 37	36.0 - 37.5 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 37.0 - 37.5 ft: NO RETURN	- 40 	20	40 		
38– 39– 40– 41– GW	37.5 - 45.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular,	80	15	<15		
42-43-	cobbles (< 8 inches), angular to rounded [QUATERNĂRY MIDDLE TERRACE DEPOSITS]					
SI Water Solutions, I	nc. Portland, OR 503.239.8799		Ject N	0. 913.	001	Page 3 of 5

FROJECT	r Solutions, Inc.	LOC	G ID:	GM	5-MW1
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND 1005 fe			VATION AND DATUM:
BORING LOCATION	Mill City, OR	TOTAL D 76	EPTH (f	ft):	DATE STARTED : 5/15/2023
DRILLING CONTRACTOR	Holt	LOGGED J. Hall	BY:		DATE FINISHED: 5/15/2023
SAMPLING METHOD:	Continuous Core	DEPTH T WATER (FIRS 60	
DRILLING METHOD:	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
46	45.0 - 47.5 ft: Soft, dark brown, moist to dry, silty GRAVEL (GM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	<10	30	
48- 49- 50- 51- 52- 53- 54- 55- GW 56- 56- 57- 58- 59-	47.5 - 62.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular, cobbles (< 8 inches), angular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<15	Bentonite Chips
GSI Water Solutions, In	c. Portland, OR 503.239.8799		 alaat N	0. 913.0	

	GSI Water	Solutions, Inc.	LOC	G ID:	: GM	5-MW1	
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNE 1005 fe			VATION AND DATUM:	
В	ORING LOCATION:	Mill City, OR	TOTAL D			DATE STARTED : 5/15/2023	
DRILLIN	NG CONTRACTOR:	Holt	LOGGEE J. Hall	BY:		DATE FINISHED: 5/15/2023	
SA	MPLING METHOD:	Continuous Core	DEPTH T		FIRS 60		
DRILLING METHOD: Sonic							
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION	
60 -		Moist to wet at 60.0-feet		0,	0		
62 63 64 64	GM	62.0 - 65.0 ft: Medium stiff to soft, dark brown, wet, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to angular, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	<40	20	10-20 Filter Pack	
66	NR	65.0 - 66.5 ft: NO RETURN				2-Inch 10-Slot PVC Screen	
67	GM	66.5 - 68.0 ft: Medium stiff to soft, dark brown, wet, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to angular, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	<40	20		
68 	SM	68.0 - 70.0 ft: Soft, dark brown, wet, silty SAND with gravel (SM), low to medium plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, subangular to subrounded, few cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	30	35	35		
70 	SW-SM	70.0 - 72.0 ft: Very Soft, dark brown, moist to wet, well graded SAND with silt and gravel (SW-SM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded, few cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	30	60	<10		
72 	GW	72.0 - 73.0 ft: Very Soft, gray, dry, well graded GRAVEL with silt and sand (GW), low plasticity, sand is very fine to coarse, subangular to angular, gravel is fine to coarse, subangular to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	25			
74	. GM	73.0 - 76.0 ft: Very Soft, dark brown, dry, silty GRAVEL (GM), low plasticity, sand is fine to coarse, angular to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	70	<10	20	Bottom of Screen = 75.0-feet	
76		Total Depth = 76.0-feet				TD = 76.0-feet	
SI Wa	ter Solutions, Inc	. Portland, OR 503.239.8799	Pr	oject N	lo. 913.	001 Page 5 of 5	

-ATTACHMENT B-

GeoSystems Analysis Soil Physical Parameters Memorandum

MEMORANDUM

August 10, 2023

TO: Matt Kohlbecker, GSI Water Solutions, Inc.

FROM: Jason Keller, GeoSystems Analysis, Inc.

RE: Gates – Mill City Borehole Sample Testing

INTRODUCTION

Geosystems Analysis, Inc. (GSA) completed physical and hydraulic testing of borehole samples collected from the Gates and Mill City, Oregon area in support of the treated wastewater infiltration feasibility assessment being completed by GSI Water Solutions (GSI) and Keller and Associates. Boreholes were drilled at three potential infiltration basin locations (Figure 1):

- Baughman Lucas (GM1)
- 4th Ave Right of Way (ROW) (GM4)
- Weyerhaeuser (GM5)

This technical memo provides test methods and results for physical and hydraulic testing performed on sonic core samples by GSA and its subcontractor.

2

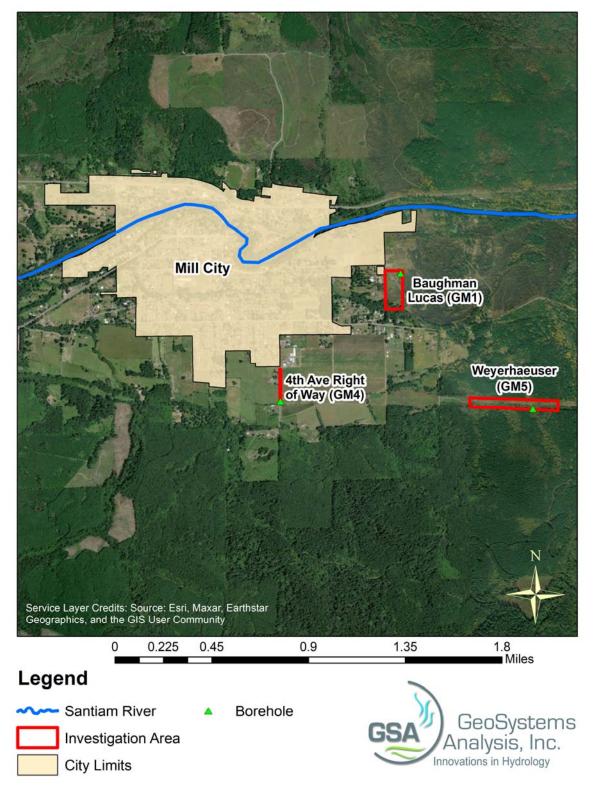


Figure 1. Borehole locations

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

METHODS

From May 15th through 19th, GSI supervised the drilling of three boreholes near Mill City, Oregon. Borehole locations are shown in Figure 1. Drilling was done by Holt Services Inc. using a track mounted sonic drill rig with a 5-inch inside diameter core barrel and 4.18-inch inside diameter sampler. The boreholes were drilled to the water table and completed as monitoring wells. Additional details of the drilling and monitoring well completion is provided in GSI (2023).

Sonic core were collected in approximately 2.5-ft lengths and placed in plastic sleeves. The length and weight of each 2.5-ft core section was recorded and then the core sample bags were opened, photographed, logged, and sampled. Geologic logging was conducted by GSI on each 2.5-ft core run to estimate major particle size fractions. Borehole logs are presented in GSI (2023).

Sub-samples were collected from horizons with distinct textural, color, and water content properties and placed in a sealed and labeled freezer bag for laboratory testing. Table 1 provides the test type, method, laboratory, and standard for all tests conducted on the samples. Sample testing methods are described below.

Test Type	Test Method	Testing Laboratory	Test Standard ¹	Samples Tested
Physical	Particle Size Distribution	GSA, Tucson, AZ	ASTM D6913-17 / ASTM D7928-17	GM1 = 2, GM4 = 2, GM5 = 2
Filysical	Specific Gravity	GSA, Tucson, AZ	ASTM D854-014	GM1 = 1, GM4 = 1, GM5 = 1
	Gravimetric Water Content	Oregon State University, Corvallis, OR	ASTM D2216-19	GM1 = 10, GM4 = 7, GM5 = 19
Hydraulic	Rigid-Wall Saturated Hydraulic Conductivity	GSA, Tucson, AZ	ASTM D5856-15	GM1 = 3, GM4 = 3, GM5 = 3

Table 1.	Laboratory	tests	conducted
----------	------------	-------	-----------

¹American Society for Testing and Materials, Volume 4.08. 2009. West Conshohocken, Pennsylvania

Particle Size Distribution

Particle size distribution (PSD) testing was conducted by GSA on two samples from each borehole. Sand, silt, and clay fractions were determined using wet sieve and hydrometer methods (ASTM D6913-17, ASTM D7928-17).

Particle Density

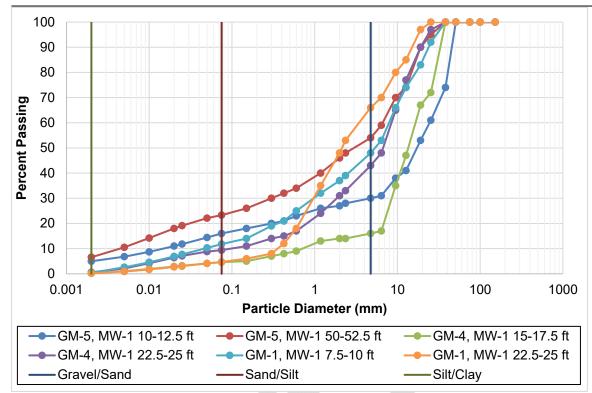
Particle density measurements were conducted by GSA on one sample from each borehole. The sample was sieved to pass the #10 mesh (2 mm) sieve and 10 grams of sample passing the #10 mesh was used for particle density testing using the pycnometer method (ASTM D854-14).

Gravimetric Water Content

Gravimetric water content measurements were conducted by Oregon State University on a total of 36 samples using the oven dry method (ASTM D2216-19). Approximately 500 grams of each sample was weighed, placed in an oven at 110 degrees Celsius and dried until repeated water content measurements indicate a constant sample mass was achieved.

Saturated Hydraulic Conductivity

Saturated hydraulic conductivity (K_{sat}) tests were conducted by GSA using a 2-inch diameter by 3inch-high rigid wall cell (ASTM D5856-15). The test cells were packed to a dry bulk density approximating the measured bulk density of the core sample from which the sample was taken. The packed test cells were saturated by upward infiltration with tap water and testing was performed with tap water.


RESULTS

Calculated core sample dry bulk density and laboratory results are summarized below. Complete laboratory results are provided in Appendix A and Appendix B.

Particle Size Distribution (PSD)

PSD testing results are shown in Figure 2. Table 2 provides percentages for gravel (>4.75 mm), sand (4.75 mm to 0.075 mm), silt (0.075 mm to 0.002 mm), and clay (<0.002 mm). All samples had a large gravel fraction of 34% or greater. The GM5 samples were finer textured than the GM4 and GM1 samples, with percent silt plus clay being 16% or greater compared for the GM5 samples, 11.8% or less for the GM1 samples and 9.4% and less for the GM4 samples.

5

Figure 2. Particle size distribution

Table 2. Percent gravel,	sand,	silt,	and	clay
--------------------------	-------	-------	-----	------

Particle Size	GM5, MW-1 10- 12.5 ft	GM5, MW-1 50- 52.5 ft	GM4, MW-1 15- 17.5 ft	GM4, MW-1 22.5-25 ft	GM1, MW-1 7.5-10 ft	GM1, MW-1 22.5-25 ft
% Gravel (>4.75 mm)	70.0	46.0	84.0	57.0	52.0	34.0
% Sand (4.75 - 0.075 mm)	14.0	30.7	11.4	33.6	36.2	61.3
% Silt (0.075 - 0.002 mm)	11.0	16.7	4.4	8.8	11.4	4.5
% Clay (<0.002 mm)	5.0	6.6	0.2	0.6	0.4	0.2

Particle Density

Error! Reference source not found. provides particle density results. Particle density ranged from 2.67 g/cm³ to 2.81 g/cm³.

Sample	Particle Density (g/cm ³)
GM1 MW1 7.5-10	2.72
GM4 MW1 15-17.5	2.81
GM5 MW1 50-52.5	2.67

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

Water Content and Bulk Density

Core sample calculated bulk density and measured water content for GM1, GM4, and GM5 are presented in Figure 3, Figure 4, and Figure 5, respectively. The water content was variable and a function of soil texture and whether the sample was collected from below the water table. Finer textured soil layers tend to have greater water content than coarser textured soils. The observed depth to groundwater at GM1, GM4, and GM5 was approximately 21 ft, 14 ft, and 61 ft below ground surface. The large variability in water content at GM5 is likely due to differing layers of fine textured soil overlaying less fine textured soils.

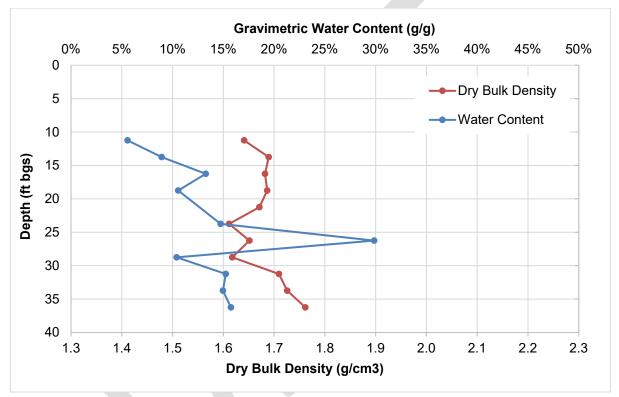


Figure 3. GM1 dry bulk density and water content

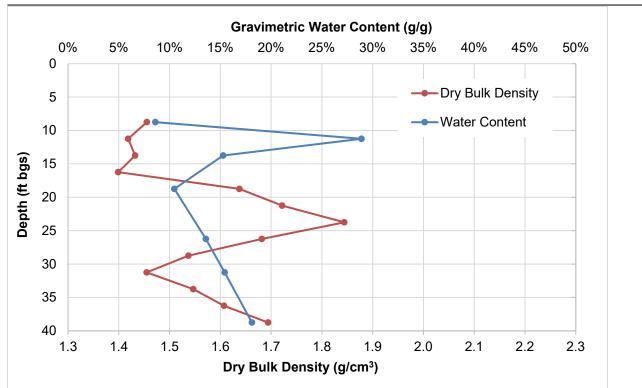


Figure 4. GM4 dry bulk density and water content

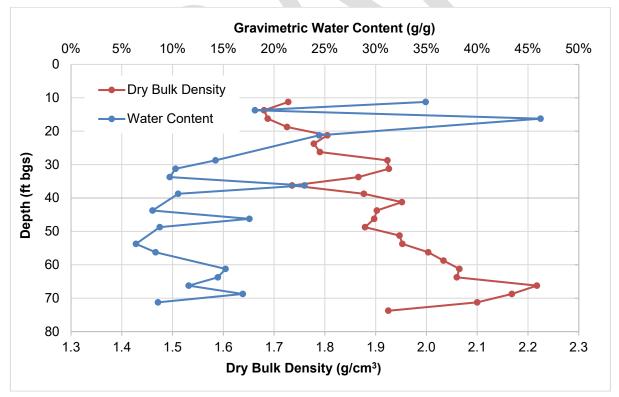


Figure 5. GM5 dry bulk density and water content

GeoSystems Analysis, Inc.

7 2310 - Subsurface Characterization of the Proposed Gates - Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City Borehole Sample Testing

8

Saturated Hydraulic Conductivity

Measured K_{sat}, field measured percent fines (silt plus clay) and sample packing bulk density and porosity are presented in Table 4. Measured K_{sat} of the GM1 and GM4 samples were 9.9 x 10^{-4} cm/s (2.81 ft/day) or greater whereas measured K_{sat} of the GM5 samples were 5.3 x 10^{-7} cm/s (0.0015 ft/day) or less. K_{sat} results correspond with field observations of percent fines, with K_{sat} values being less for the finer textured GM5 samples (percent fines of 20% or more). The percent fines of the GM1 and GM4 samples were 10% or less and corresponded to greater measured K_{sat}. The low K_{sat} values for the GM5 samples indicate that the deeper unsaturated zone sediments at GM5 may significantly limit percolation of infiltrated water at this location.

Sample ID	Field Measured Percent	Dry Bulk Density	Total Porosity	Saturated Hydraulic Conductivity	
	Silt + Clay	(g/cm ³)	(cm³/cm³)	(cm/sec)	(ft/day)
GM-1, MW-1 7.5-10 ft	10	1.74	0.36	9.90E-04	2.81
GM-1, MW-1 15-17.5 ft	5	1.63	0.40	1.20E-02	34.02
GM-1, MW-1 22.5-25 ft	5	1.60	0.41	4.30E-03	12.19
GM-4, MW-1 15-17.5 ft	5	1.45	0.48	6.20E-03	17.57
GM-4, MW-1 17.5-20 ft	5	1.54	0.44	2.10E-03	5.95
GM-4, MW-1 22.5-25 ft	5	1.69	0.38	3.10E-03	8.79
GM-5, MW-1 10-12.5 ft	40	1.57	0.43	1.30E-07	0.0004
GM-5, MW-1 20-22.5 ft	20	1.67	0.39	5.30E-07	0.0015
GM-5, MW-1 50-52.5 ft	30	1.80	0.32	6.20E-08	0.0002

Table 4. Saturated hydraulic conductivity, packing bulk density and porosity, and field estimated percent silt and clay

CONCLUSIONS

GM5 K_{sat} results of 5.3 x 10-7 cm/s (0.0015 ft/day) or less indicate the finer textured sediments observed in the unsaturated zone at GM5 may limit deep percolation at this location. Additionally, the presence of multiple layers of finer textured material throughout the unsaturated zone at GM5 is supported by the variable elevated water contents at this borehole. Conversely, the measured K_{sat} values at GM1 and GM4 do not indicate potential restrictions to net percolation from deeper unsaturated sediments present at these locations.

REFERENCES

GSI, see GSI Water Solutions, Inc.

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

GSI Water Solutions, Inc., 2023. Gates/Mill City Deep Soil Characterization and Slug Testing Results, Marion and Linn Counties, Oregon. Technical Memorandum to Chris Einmo, Marion County, dated August XX, 2023

Appendix A. GSA Laboratory Test Results

Date:August 8, 2023Project Number:92310Project Name:GSI - Mill City Inflitration SiteJob Description:Lab TestingClient:GSI Water Solutions, Inc.Project Contact:Matt Kohlbecker, RGBilling Address:55 SW Yamhill St., Suite 300Portland, OR 97204

Test	Method	Qty
Specific Gravity of Soils	ASTM D854-14	3
Particle Size Analysis with Hydrometer	ASTM D6913-17 / ASTM C136-14 / ASTM D7928-17	6
Rigid-Wall Saturated Hydraulic Conductivity	ASTM D5856-15	9

Thank you for choosing GeoSystems Analysis for your material testing needs. We look forward to working with you again. If you have any questions or require additional information, please contact us at 1-520-628-9330

Sincerely,

Prepared By: Nate Blevens Laboratory Project Manager

Reviewed By: Mike Yao Laboratory Technical Director

Laboratory Test Results - Soil Particle Density

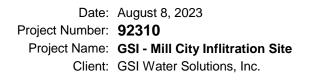
Date: August 8, 2023

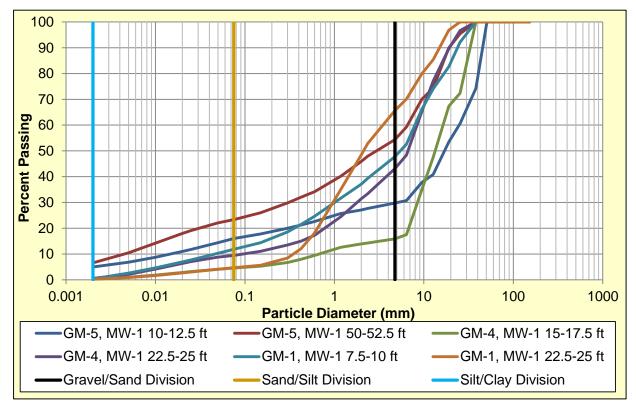
Project Number: 92310

Project Name: GSI - Mill City Inflitration Site

Client: GSI Water Solutions, Inc.

Sample ID	Particle Density (g/cm ³)
GM1 MW1 7.5-10	2.72
GM4 MW1 15-17.5	2.81
GM5 MW1 50-52.5	2.67


Laboratory Test Results - Particle Size Distribution


Date: August 8, 2023 Project Number: **92310** Project Name: **GSI - Mill City Inflitration Site** Client: GSI Water Solutions, Inc.

PSD								
		Sample ID						
Si	eve	GM-5, MW-1 10-12.5 ft	GM-5, MW-1 50-52.5 ft	GM-4, MW-1 15-17.5 ft	GM-4, MW-1 22.5-25 ft	GM-1, MW-1 7.5-10 ft	GM-1, MW-1 22.5-25 ft	
(mm)	US standard		Percent Passing					
152	6"	100	100	100	100	100	100	
100	4"	100	100	100	100	100	100	
75	3"	100	100	100	100	100	100	
50.8	2"	100	100	100	100	100	100	
38.1	1.5"	74	100	100	100	100	100	
25.4	1"	61	95	72	97	92	100	
19.05	3/4"	53	90	67	90	83	97	
12.7	1/2"	41	74	47	77	74	85	
9.525	3/8"	38	70	35	65	66	80	
6.4	1/4"	31	59	17	48	53	70	
4.75	#4	30	54	16	43	48	66	
2.36	#8	28	48	14	33	39	53	
2	#10	27	46	14	31	37	48	
1.18	#16	26	40	13	24	32	35	
0.6	#30	23	34	9	17	25	18	
0.425	#40	21	32	8	15	21	12	
0.3	#50	20	30	7	14	19	8	
0.15	#100	18	26	5	11	14	6	
0.075	#200	16.0	23.3	4.6	9.4	11.8	4.7	
0.05		14.4	22.1	4.1	8.8	10.3	4.1	
0.025	ter	11.8	19.1	3.2	7.1	7.7	3.0	
0.02	Hydrometer	11.0	18.0	2.9	6.4	6.9	2.7	
0.01	dro	8.7	14.2	1.9	4.2	4.6	1.7	
0.005	НУ	6.8	10.5	1.0	2.1	2.6	0.9	
0.002		5.0	6.6	0.2	0.6	0.4	0.2	

Laboratory Test Results - Particle Size Distribution

Laboratory Test Results - Rigid-Wall Saturated Hydraulic Conductivity

Date: August 8, 2023 Project Number: **92310** Project Name: **GSI - Mill City Inflitration Site** Client: GSI Water Solutions, Inc.

Rigid-Wall Saturated Hydraulic Conductivity							
	Measured						
Sample ID	Dry Bulk Density (g/cm³)	Total Porosity (cm ³ /cm ³)	Saturated Hydraulic Conductivity (cm/sec)				
GM-1, MW-1 7.5-10 ft	1.74	0.36	9.9E-04				
GM-1, MW-1 15-17.5 ft*	1.63	0.40	1.2E-02				
GM-1, MW-1 22.5-25 ft*	1.60	0.41	4.3E-03				
GM-4, MW-1 15-17.5 ft	1.45	0.48	6.2E-03				
GM-4, MW-1 17.5-20 ft*	1.54	0.44	2.1E-03				
GM-4, MW-1 22.5-25 ft*	1.69	0.38	3.1E-03				
GM-5, MW-1 10-12.5 ft*	1.57	0.43	1.3E-07				
GM-5, MW-1 20-22.5 ft*	1.67	0.39	5.3E-07				
GM-5, MW-1 50-52.5 ft	1.80	0.32	6.2E-08				

*Using average particle density for porosity calculation (2.73 g/cm³)

Appendix B. OSU Laboratory Test Results

Oregon State University

Soil Health Laboratory

soil.lab@oregonstate.edu 541-737-2187 Crop and Soil Science Department 3079 Ag-Life Sciences Bldg Corvallis, OR 97331 Elemental Analysis Results

Name:	Jason Keller
Organization:	GeoSystems Analysis, Inc.
Contact for results:	jason@gsanalysis.com
Date submitted:	5/26/2023
Date delivered:	5/31/2023
Group number:	223308

Method:

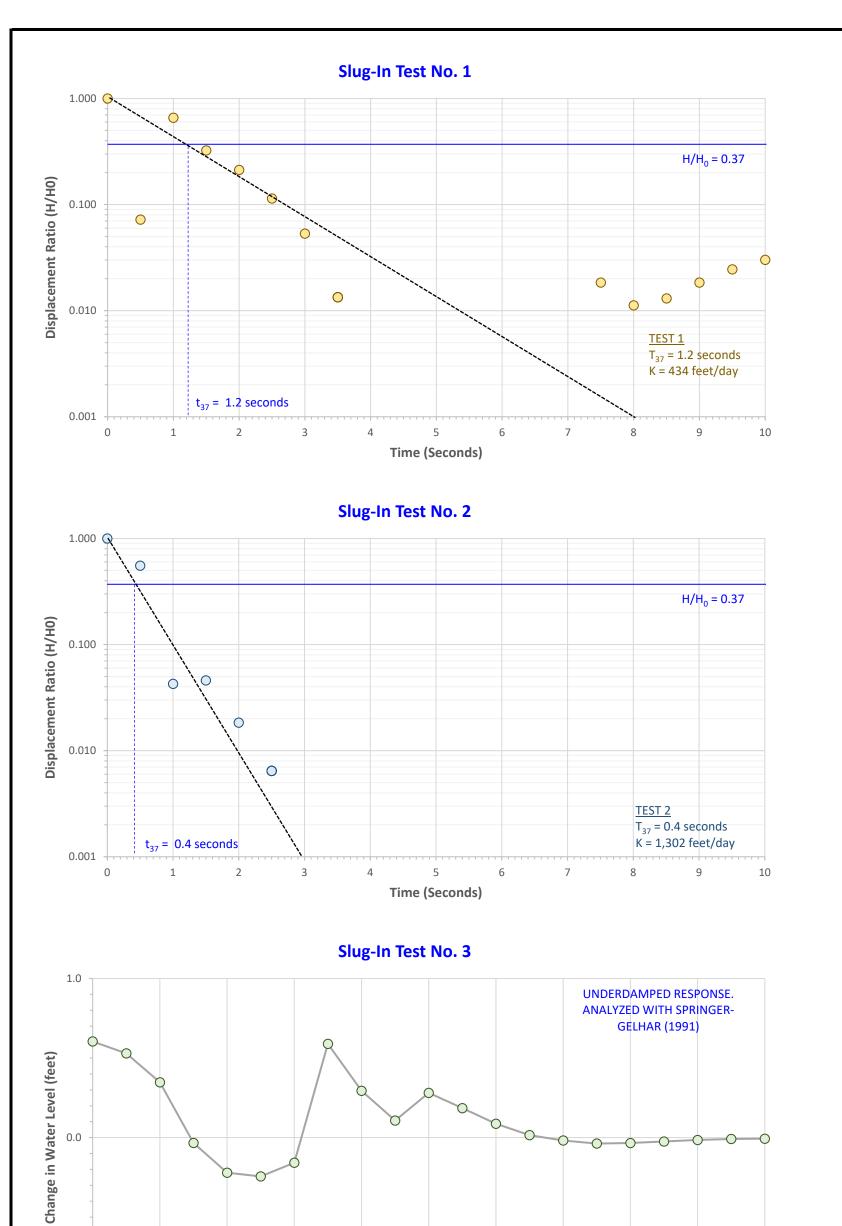
Moisture Gravimetric moisture as sample is received. All other data reported on a dry matter basis

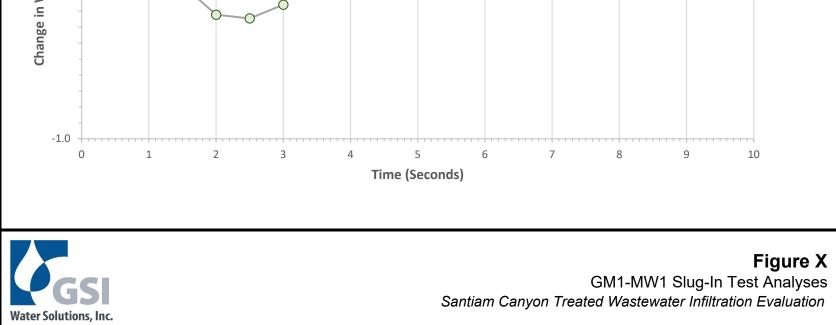
			_
Sample	Sample ID		
Customer ID	Lab ID	Moisture	
GM5 10-12.5	1	34.9	
GM5 12.5-15	2	18.1	
GM5 15-17.5	3	46.2	
GM5 20-22	4	24.4	
GM5 27.5-30	5	14.2	
GM5 30-32.5	6	10.3	
GM5 32.5-35	7	9.7	
GM5 35-37.5	8	23.0	
GM5 37.5-40	9	10.6	
GM5 42.5-45	10	8.0	
GM5 45-47.5	11	17.6	
GM5 47.5-50	12	8.7	
GM5 52.5-55	13	6.4	
GM5 55-57.5	14	8.3	
GM5 60-62.5	15	15.2	
GM5 62.5-65	16	14.5	
GM5 65-67.5	17	11.6	
GM5 67.5-70	18	16.9	
GM5 70-72.5	19	8.6	
GM1 10-12.5	20	5.6	
GM1 12.5-15	21	8.9	
GM1 15-17.5	22	13.3	
GM1 17.5-20	23	10.6	
GM1 25-27.5	24	29.9	
GM1 30-32.5	25	15.2	
GM1 32.5-35	26	15.0	
GM1 35-35.5	27	15.7	
GM1 36-37.5	28	15.7	
GM1 37.5-40	29	11.9	
GM4 7.5-10	30	8.6	
GM4 10-12.5	31	28.9	
GM4 12.5-15	32	15.3	
GM4 17.5-20	33	10.5	
GM4 22.5-25	34	14.7	
GM4 25-27.5	35	13.6	
GM4 27.5-30	36	10.4	
GM4 30-32.5	37	15.4	
GM4 37.5-40	38	18.1	
	1		l

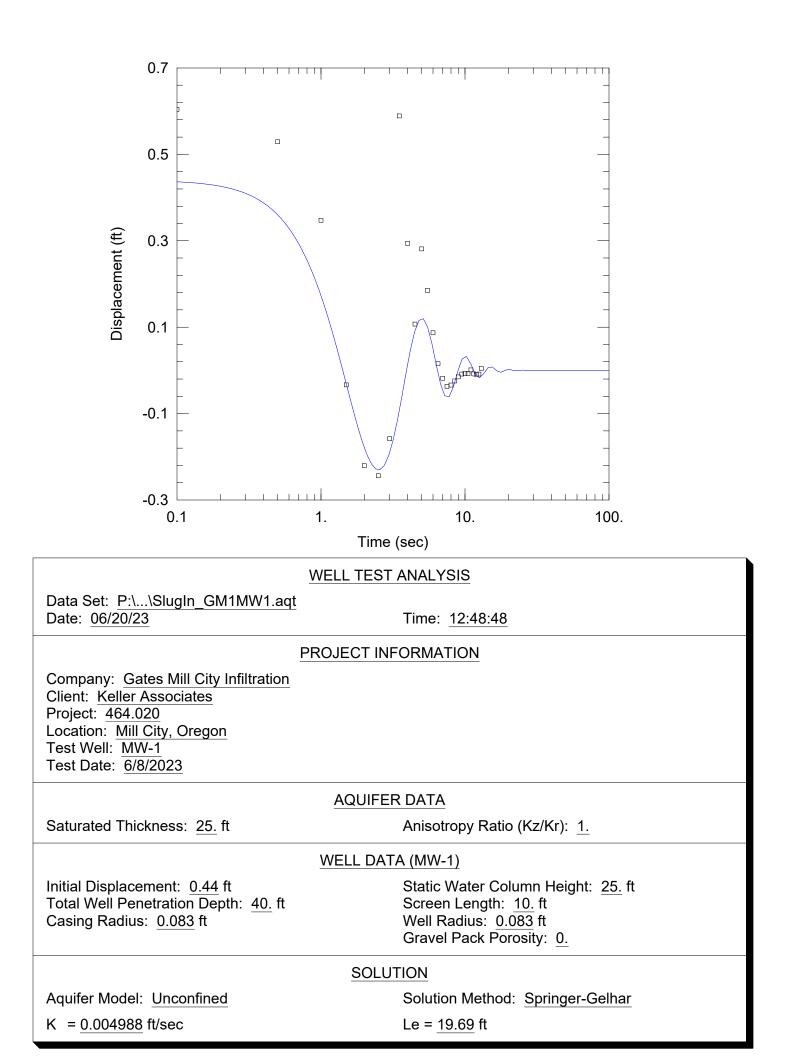
Sample ID		g	g	g	%
Customer ID	Lab ID	Tin) (/ cinht	Weight Before 105	Weight After	Gravimetric
Customer ID	Lab ID	Tin Weight	С	105 C	moisture
GM5 10-12.5	1	12.6	584.4	436.4	34.9
GM5 12.5-15	2	12.5	720.0	611.5	18.1
GM5 15-17.5	3	12.4	463.1	320.6	46.2
GM5 20-22	4	12.5	444.4	359.6	24.4
GM5 27.5-30	5	12.5	506.1	444.6	14.2
GM5 30-32.5	6	12.4	298.3	271.6	10.3
GM5 32.5-35	7	12.5	370.1	338.4	9.7
GM5 35-37.5	8	12.5	470.5	384.9	23.0
GM5 37.5-40	9	12.4	428.3	388.6	10.6
GM5 42.5-45	10	12.3	432.0	400.8	8.0
GM5 45-47.5	11	12.7	513.2	438.4	17.6
GM5 47.5-50	12	13.3	409.0	377.2	8.7
GM5 52.5-55	13	12.9	446.9	420.8	6.4
GM5 55-57.5	14	12.4	380.4	352.1	8.3
GM5 60-62.5	15	12.4	447.9	390.4	15.2
GM5 62.5-65	16	12.5	685.3	600.3	14.5
GM5 65-67.5	17	12.7	629.8	565.7	11.6
GM5 67.5-70	18	12.7	584.3	501.6	16.9
GM5 70-72.5	19	12.7	509.6	470.4	8.6
GM1 10-12.5	20	12.4	465.2	441.3	5.6
GM1 12.5-15	21	12.5	311.5	287.0	8.9
GM1 15-17.5	22	12.4	543.4	481.2	13.3
GM1 17.5-20	23	12.4	390.4	354.3	10.6
GM1 25-27.5	24	12.6	540.2	418.9	29.9
GM1 30-32.5	25	12.5	439.8	383.3	15.2
GM1 32.5-35	26	12.4	557.9	486.9	15.0
GM1 35-35.5	27	12.4	363.0	315.3	15.7
GM1 36-37.5	28	12.5	574.1	498.1	15.7
GM1 37.5-40	29	12.4	358.1	321.4	11.9
GM4 7.5-10	30	12.4	442.9	408.8	8.6
GM4 10-12.5	31	12.5	451.4	353.0	28.9
GM4 12.5-15	32	12.4	521.0	453.6	15.3
GM4 17.5-20	33	12.3	338.3	307.4	10.5
GM4 22.5-25	34	12.4	436.0	381.6	14.7
GM4 25-27.5	35	12.4	642.3	567.0	13.6
GM4 27.5-30	36	12.4	429.6	390.3	10.4
GM4 30-32.5	37	12.5	511.6	444.9	15.4
GM4 37.5-40	38	12.4	477.4	406.1	18.1

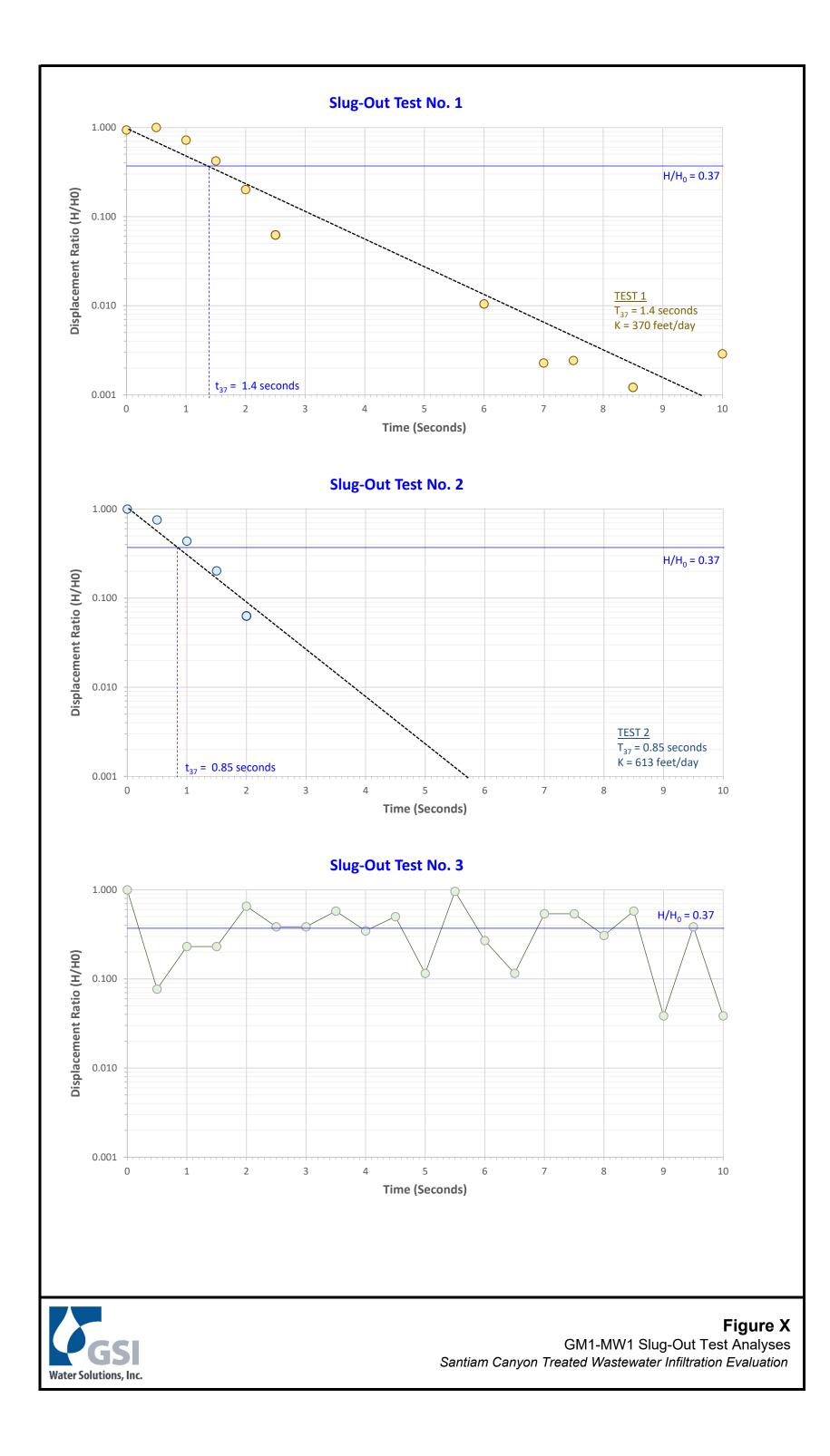
-ATTACHMENT C-----

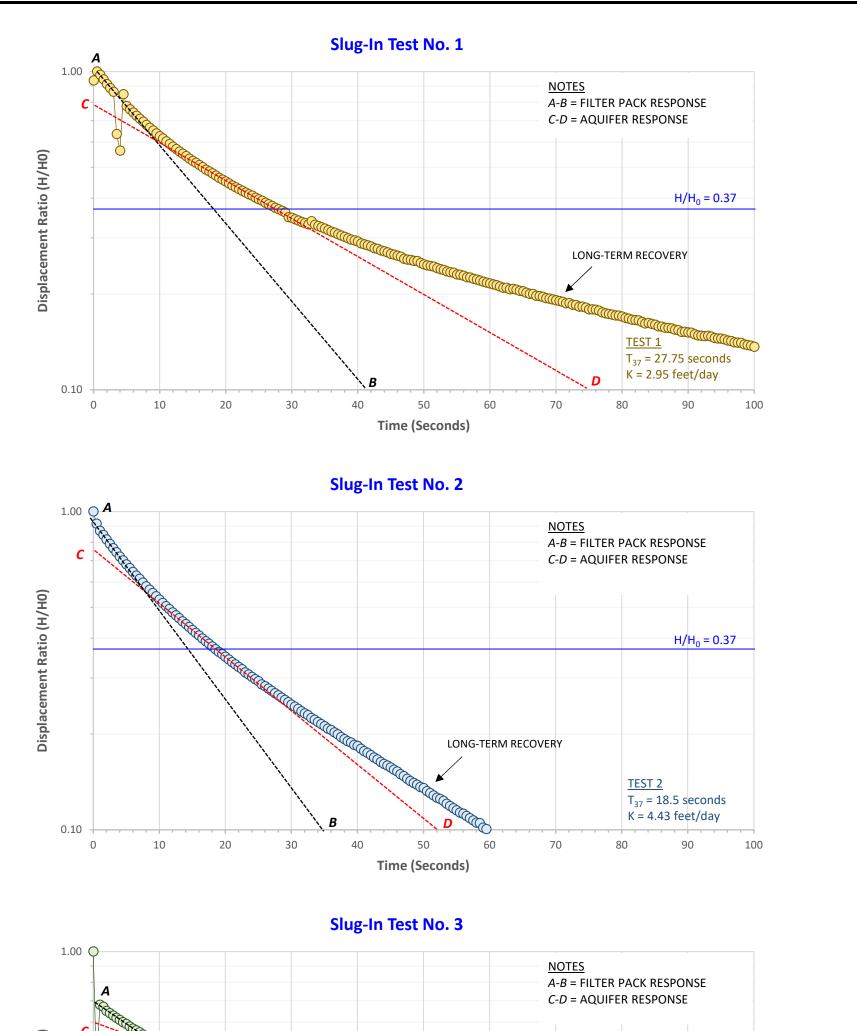
Slug Test Results

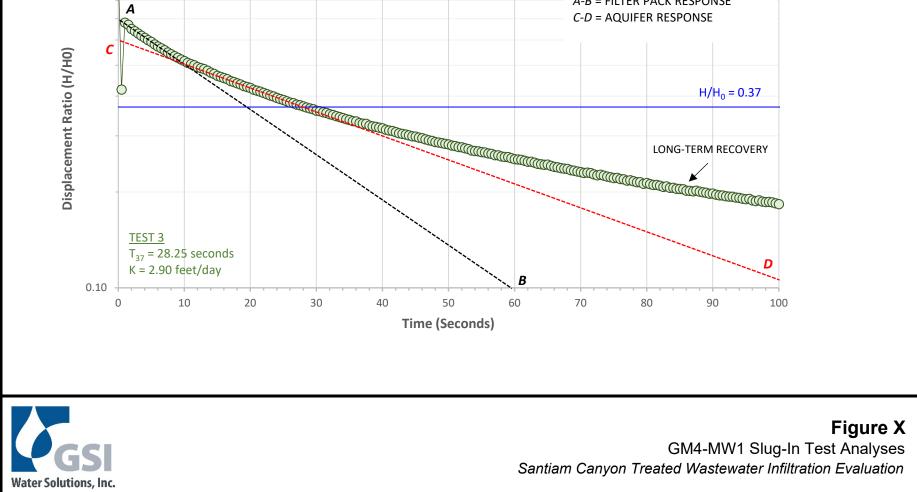

Slug Test Results at GM1 Santiam Canyon Treated Wastewater Infiltration Evaluation

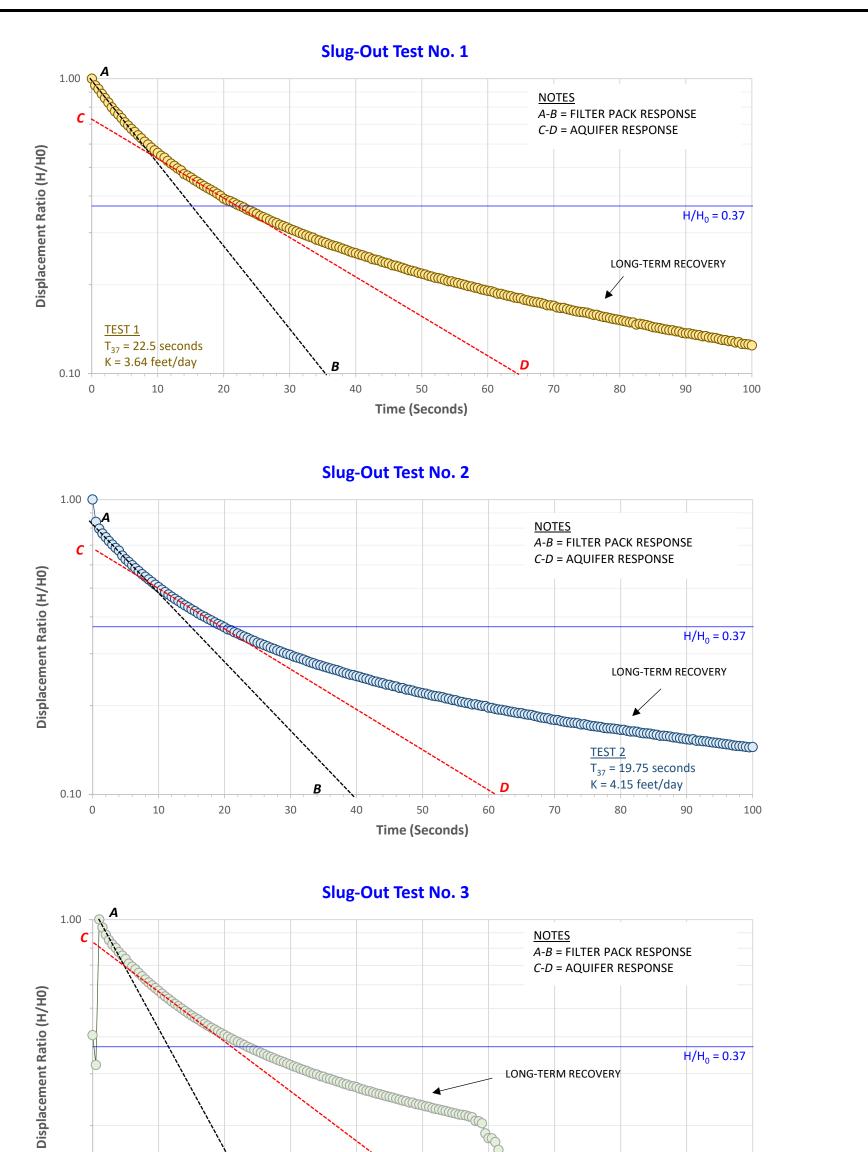

	t ₃₇ (seconds)	K (feet/day)	Notes
Slug In 1	1.2	434	Hvorslev Method
Slug In 2	0.4	1,302	Hvorslev Method
Slug In 3		431	Underdamped response. Analyzed with Springer-Gelhar (1991)
Slug Out 1	1.4	370	Hvorslev Method
Slug Out 2	0.85	613.00	Hvorslev Method
Slug Out 3			Data too noisy for analysis
•	Geomean	560.3	

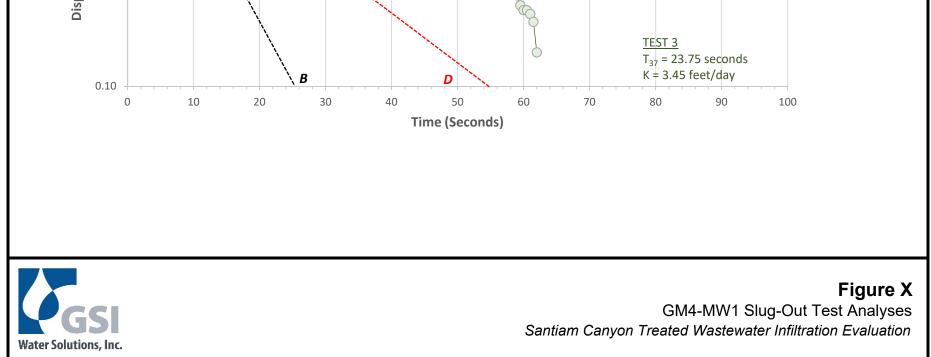

<u>Note:</u>


Site GM1 is characterized by high hydraulic conductivity. Recommend conservatively using the lowest measured value of 370 for MOUNDSOLV analyses for initial basin sizing. Need to recommend a pumping test to dial in final basin design.

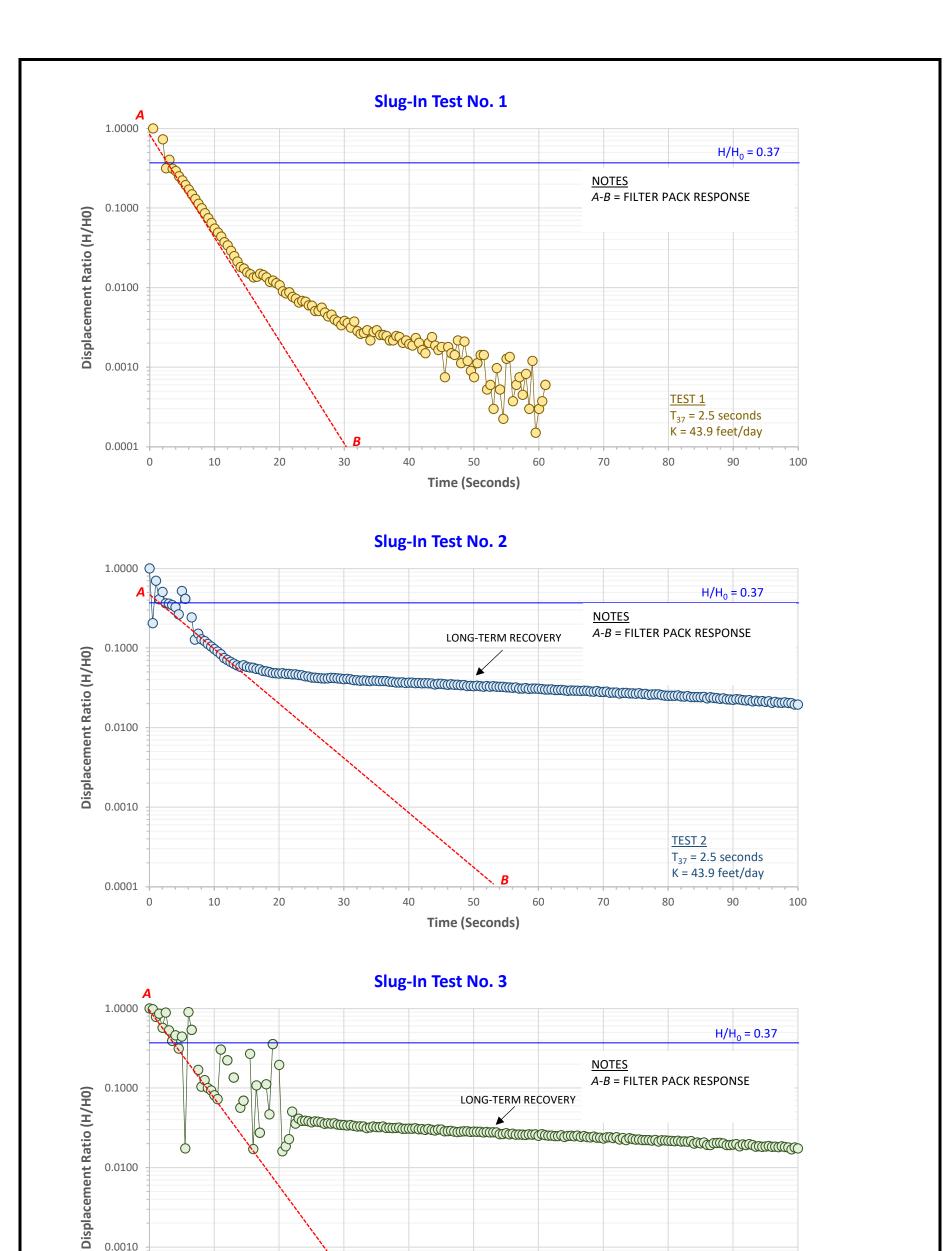


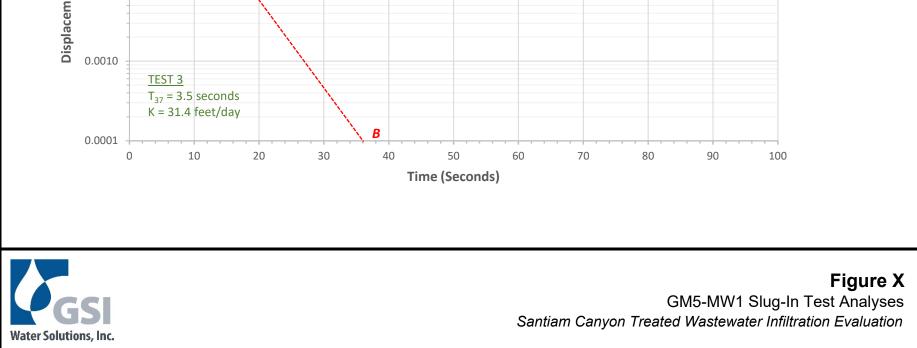


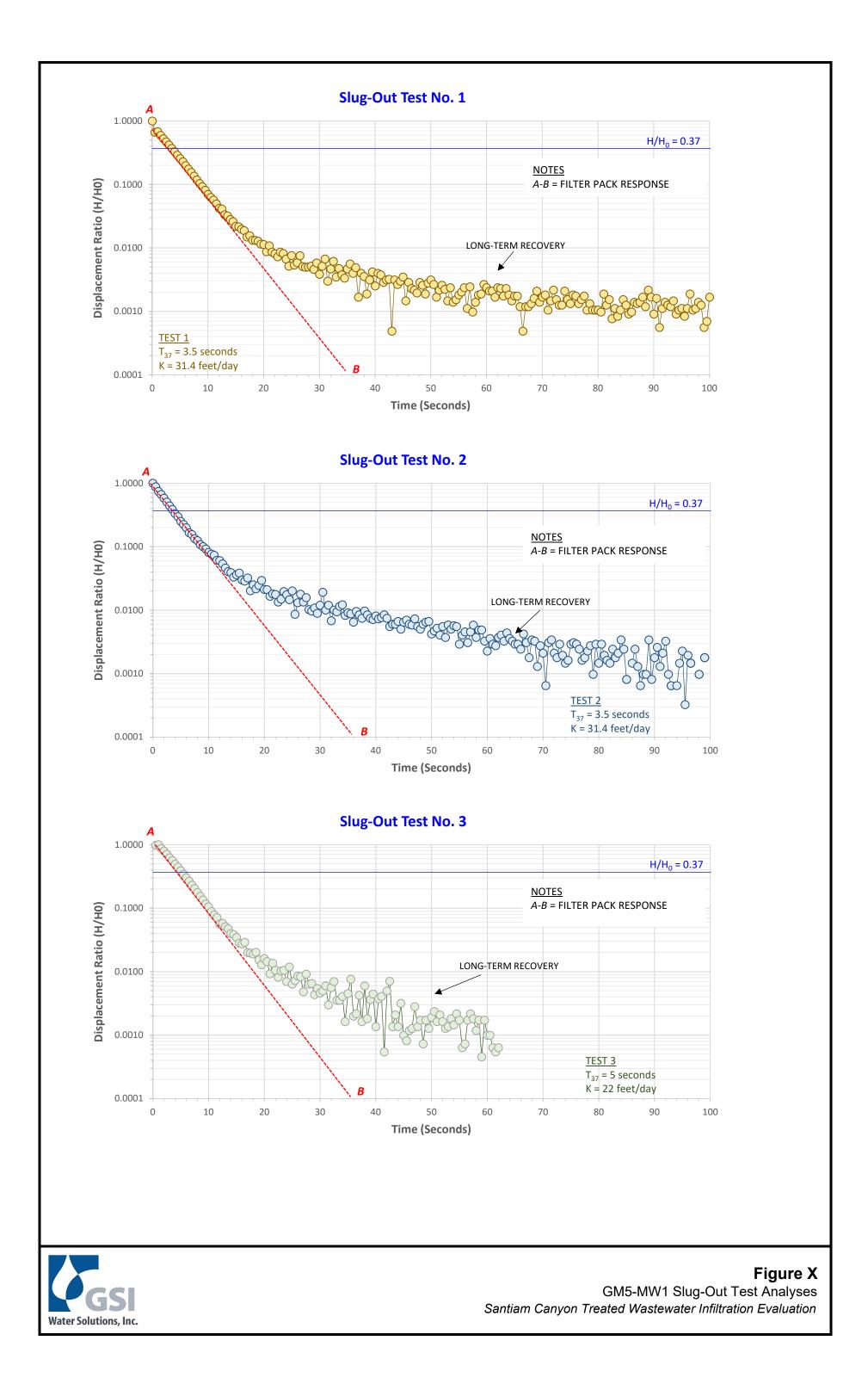



Slug Test Results at GM4 Santiam Canyon Treated Wastewater Infiltration Evaluation

	t₃₇ (seconds)	K (feet/day)	Notes
MW-1, Slug In 1	27.75	2.95	Hvorslev Method
MW-1, Slug In 2	18.50	4.43	Hvorslev Method
MW-1, Slug In 3	28.25	2.90	Hvorslev Method
MW-1, Slug Out 1	22.50	3.64	Hvorslev Method
MW-1, Slug Out 2	19.75	4.15	Hvorslev Method
MW-1, Slug Out 3	23.75	3.45	Hvorslev Method. Value of t ₃₇ may reflect effects from late-term recovery, but effects are not likely to be significant because the hydraulic conductivity from Slug Out 3 is similar to the hydraulic conductivity from the other slug tests.
	Geomean	3.54	







Slug Test Results at GM5 Santiam Canyon Treated Wastewater Infiltration Evaluation

	t₃₇ (seconds)	K (feet/day)	Notes
MW-1, Slug In 1	2.5	43.9	Hvorslev Method
MW-1, Slug In 2	2.5	43.9	Hvorslev Method
MW-1, Slug In 3	3.5	31.4	Hvorslev Method
MW-1, Slug Out 1	3.5	31.4	Hvorslev Method
MW-1, Slug Out 2	3.5	31.4	Hvorslev Method
MW-1, Slug Out 3	5.0	22.0	Hvorslev Method
	Geomean	33.07	

-ATTACHMENT D-

Groundwater SDWA Analysis and Wastewater Influent Testing Laboratory Results

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300 Portland, OR 97204					
	System Name:					
	System ID Number:					
	Source Number:					
	Multiple Sources:					
	Sample Type:					
	Sample Purpose:	Investigative or Other				
Sample Location: GM1MW1						
	County:					

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

								Lab mana		
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	6.15 H5	pH Units			klp	4072	a SM4500-H+ B	06/08/23 15:58	Temp (C) : 22.1
1067	ALKALINITY	42.5	mg CaCO3/	2		klp	4072	a SM2320 B	06/08/23	
1910	CORROSIVITY	-2.92	SI			bj	4072	a SM203	06/23/23	
	CARBONATE	ND	mqCaCO3/L	2		klp	4072	a SM2320 B	06/08/23	
	BICARBONATE	42.5	mg CaCO3/			klp		SM2320 B		
						.			06/08/23	
	HYDROXIDE	ND	mg CaCO3/			klp		a SM2320 B	06/08/23	
1067	ALKALINITY	42.5	mg CaCO3/	2.0		klp	4072	a SM2320 B	06/08/23	
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb	4072	D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	78	mg/L	10	500	mso		SM2540 C	06/13/23	
1020	CHROMIUM	ND	mg/L	0.001	500	tjb		200.8	06/02/23	
1020	BERYLLIUM	ND		0.0003		tjb		200.8		
		ND H3	mg/L			-			06/02/23	
1041	NITRITE-N		mg/L	0.01	1.0	anl		SM4500-NO3 F	05/30/23 16:41	
1005	ARSENIC	ND	mg/L	0.0005		tjb		200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 a	200.8	06/02/23	
1015	CADMIUM	ND	mg/L	0.00025		tjb	4072 a	200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1040	NITRATE-N	1.10 H3	mg/L	0.005	10	anl	OR100063	SM4500-NO3 F	05/30/23 16:41	
1010	BARIUM	0.0035	mg/L	0.001		tjb	4072	200.8	06/02/23	
1030	LEAD	0.00027 J	mg/L	0.0005		tjb	4072	200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072	245.1	06/13/23	
	HARDNESS	39.4	mg CaCO3/	10		bj	4072 ;	a 200.7	06/05/23	

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

GSI Water Solutio 55 SW Yamhill St Portland, OR 972	reet Ste 300
System Name:	
System ID Number:	
Source Number:	
Multiple Sources:	
Sample Type:	
Sample Purpose:	Investigative or Other
Sample Location: County:	GM1MW1
	55 SW Yamhill St Portland, OR 972 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Sample Location:

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT			
	SILICA	30.0	mg/L	0.05		bj	4072 a	200.7	06/05/23				
	TOTAL SUSPENDED SOLIDS	11.5 NN	mg/L	2		рар	OR100063 c	I-3765-85	06/01/23				
1032	MANGANESE	0.0776	mg/L	0.001		bj	4072 a	200.7	06/05/23				
1028	IRON	0.62	mg/L	0.050		bj	4072 a	200.7	06/05/23				
1002	ALUMINUM	0.52	mg/L	0.010		bj	4072 a	200.7	06/05/23				
1036	NICKEL	0.00086 J	mg/L	0.0005		tjb	4072 a	200.8	06/02/23				
1022	COPPER	0.0020	mg/L	0.002		tjb	4072 a	200.8	06/02/23				
1095	ZINC	0.0033	mg/L	0.0025		tjb	4072 a	200.8	06/02/23				
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/01/23				
1016	CALCIUM	10.5	mg/L	0.5		bj	4072 a	200.7	06/05/23				
1052	SODIUM	3.8	mg/L	0.5		bj	4072 a	200.7	06/05/23				
1031	MAGNESIUM	3.2	mg/L	0.5		bj	4072 a	200.7	06/05/23				
1042	POTASSIUM	2.6	mg/L	0.5		bj	4072 a	200.7	06/05/23				
1017	CHLORIDE	1.4	mg/L	0.2		jwn	4072 a	300.0	06/01/23				
	MOLYBDENUM	0.00062	mg/L	0.001		tjb	4072 a	200.8	06/20/23				
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23				
1055	SULFATE	1.6	mg/L	0.2		jwn	4072 a	300.0	06/01/23				
	Radiological												
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23				
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA			
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA			
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA			
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by			
										PacePA			
NOTES:										<u>i</u>			

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300 Portland, OR 97204

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM1MW1 County:

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM1MW10523 Lab Number: 23 31092 Date Collected: 5/28/23 11:20 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

						1				
EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/09/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/09/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/09/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/09/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/14/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	06/20/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/09/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/09/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM1-MW1 County: Sampled By: Jesse Hall Sampler Phone:

Reference Number: 23-22395 Project: Santiam Canyon Infiltration Eval

Field ID: GM1 Lab Number: 23 44385 Date Collected: 7/25/23 11:00 Date Extracted: 524_230728 Date Analyzed: 07/28/23 Report Date: 8/4/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Into the parameter was not detected above the Lower reporting Limit (LTC).
* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.
An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.
These test results meet all the requirements of NELAP, unless otherwise stated in writing, and relate only to these samples. Estimates of uncertainty are not included in this report. If this information is required to the parameter was block of the same the data in writing. required please contact us at the phone number listed in the report header

If you have any questions concerning this report contact our office at the above phone number. FORM: cVOC OR.rpt

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM4MW1 County:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM4MW10523 Lab Number: 23_31097 Collect Date: 5/29/23 14:55 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

			1					Eabimana		
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	7.15 H5	pH Units			klp	4072 a	a SM4500-H+ B	06/08/23 16:01	Temp (C) : 22.0
1067	ALKALINITY	114	mg CaCO3/	5		klp	4072 a	a SM2320 B	06/08/23	22.0
1910	CORROSIVITY	-1.25	SI			bj	4072 a	a SM203	06/23/23	
	CARBONATE	ND	mqCaCO3/L	F		Ida	4072 a	a SM2320 B		
			l u			klp			06/08/23	
	BICARBONATE	114	mg CaCO3/	5		klp	4072 a	a SM2320 B	06/08/23	
	HYDROXIDE	ND	mg CaCO3/	5		klp	4072 a	a SM2320 B	06/08/23	
1067	ALKALINITY	114	mg CaCO3/	5.0		klp	4072 a	a SM2320 B	06/08/23	
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb	4072 a	a D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	147	mg/L	10	500	mso	046 a	a SM2540 C	06/13/23	
1020	CHROMIUM	0.0019	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1075	BERYLLIUM	ND	mg/L	0.0003		tjb	4072 a	a 200.8	06/02/23	
1041	NITRITE-N	ND	mg/L	0.01	1.0	anl	OR100063	SM4500-NO3 F	05/30/23 16:48	
1005	ARSENIC	0.0017	mg/L	0.0005		tjb	4072 a	a 200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 a	a 200.8	06/02/23	
1015	CADMIUM	0.00019 J	mg/L	0.00025		tjb	4072 a	a 200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1040	NITRATE-N	0.02	mg/L	0.005	10	anl	OR100063	sM4500-NO3 F	05/30/23 16:48	
1010	BARIUM	0.0211	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1030	LEAD	0.00087	mg/L	0.0005		tjb	4072 a	a 200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072 a	245.1	06/13/23	
		00.0						000 7		
	HARDNESS	99.6	mg CaCO3/	10		bj	4072 a	a 200.7	06/05/23	
NOTEO.										

MOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value wells not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutio 650 NE Holladay Portland, OR 972	Street Ste 900
	System Name:	
	System ID Number:	
	Source Number:	
	Multiple Sources:	
	Sample Type:	
	Sample Purpose:	Investigative or Other
	Sample Location:	GM4MW1
	County:	

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM4MW10523 Lab Number: 23_31097 Collect Date: 5/29/23 14:55 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

			1							-
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	58.2	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	84 NN	mg/L	2		рар		I-3765-85	06/01/23	
1032	MANGANESE	0.449	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	3.63	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	3.80	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.0043	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0367	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0087	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/07/23	
1016	CALCIUM	18.6	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	9.4	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	12.9	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	1.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	2.1	mg/L	0.2		jwn	4072 a	300.0	06/07/23	
	MOLYBDENUM	0.00078 J	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	0.9	mg/L	0.4		jwn	4072 a	300.0	06/07/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by PacePA
NOTES										

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM4MW1 County:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM4MW10523 Lab Number: 23 31097 Date Collected: 5/29/23 14:55 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/09/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/09/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/09/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/09/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/05/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	07/03/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/09/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/09/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> **ORELAP 4072** Idaho WA00097

> > Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM4MW1 County: Sampled By: Mellisa Girbach Sampler Phone:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 -

Field ID: GM4MW10523 Lab Number: 23_31097 Date Collected: 5/29/23 14:55 Date Extracted: 524_230605 Date Analyzed: 06/05/23 Report Date: 7/12/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutio 650 NE Holladay Portland, OR 972	Street Ste 900
	System Name:	
	System ID Number:	
	Source Number:	
	Multiple Sources:	
	Sample Type:	
	Sample Purpose:	Investigative or Other
	Sample Location:	GM5MW1
	County:	

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM5MW10523 Lab Number: 23_31106 Collect Date: 5/30/23 13:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

								Eabimana	ger, i ortiari	u
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	7.06 H5	pH Units			klp	4072 ;	a SM4500-H+ B	06/08/23 16:04	Temp (C) : 22.7
1067	ALKALINITY	41.4	mg CaCO3/	2		klp	4072 ;	a SM2320 B	06/08/23	
1910	CORROSIVITY	-2.08	SI			bj	4072 ;	a SM203	06/23/23	
	CARBONATE	ND	mgCaCO3/L	2		klp	4072	a SM2320 B	06/08/23	
	BICARBONATE	41.4	mg CaCO3/			klp	-	a SM2320 B		
		ND	-						06/08/23	
	HYDROXIDE		mg CaCO3/			klp		a SM2320 B	06/08/23	
1067	ALKALINITY	41.4	mg CaCO3/	2.0		klp	4072 a	a SM2320 B	06/08/23	
4004				0.005						
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb		D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	84	mg/L	10	500	mso		a SM2540 C	06/13/23	
1020	CHROMIUM	0.0032	mg/L	0.001		tjb		a 200.8	06/02/23	
1075	BERYLLIUM	ND	mg/L	0.0003		tjb	4072 a	a 200.8	06/02/23	
1041	NITRITE-N	ND	mg/L	0.01	1.0	anl	OR100063	sM4500-NO3 F	05/30/23 16:49	
1005	ARSENIC	0.00095	mg/L	0.0005		tjb	4072 a	a 200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 ;	200.8	06/02/23	
1015	CADMIUM	ND	mg/L	0.00025		tjb	4072 a	200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	200.8	06/02/23	
1040	NITRATE-N	0.46	mg/L	0.005	10	anl	OR100063	SM4500-NO3 F	05/30/23 16:49	
1010	BARIUM	0.0120	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1030	LEAD	0.00060	mg/L	0.0005		tjb	4072 -	a 200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072 a	245.1	06/13/23	
	HARDNESS	36.3	mg CaCO3/	10		bj	4072 a	a 200.7	06/05/23	

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232							
	System Name:							
	System ID Number:							
	Source Number:							
	Multiple Sources:							
	Sample Type:							
	Sample Purpose:	Investigative or Other						
	Sample Location:	GM5MW1						
	County:							

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM5MW10523 Lab Number: 23_31106 Collect Date: 5/30/23 13:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

			1					Lab Mana	,	, ,
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	43.3	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	71 NN	mg/L	4		рар		I-3765-85	06/01/23	
1032	MANGANESE	0.106	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	2.61	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	2.26	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.0028	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0142	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0059	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/02/23	
1016	CALCIUM	9.1	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	4.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	3.3	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	1.0	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	1.4	mg/L	0.2		jwn	4072 a	300.0	06/02/23	
	MOLYBDENUM	ND	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	0.3	mg/L	0.2		jwn	4072 a	300.0	06/02/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by PacePA
NOTES			•	-						

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM5MW1 County:

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM5MW10523 Lab Number: 23 31106 Date Collected: 5/30/23 13:20 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

								Lac	i Manager, P	
EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/13/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/13/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/13/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/13/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/05/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	07/03/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/13/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/13/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 • 360.757.1400

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> **ORELAP 4072** Idaho WA00097

> > Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM5MW1 County: Sampled By: Mellisa Girbach Sampler Phone:

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM5MW10523 Lab Number: 23_31106 Date Collected: 5/30/23 13:20 Date Extracted: 524_230605 Date Analyzed: 06/05/23 Report Date: 7/12/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed

TERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/09/2023

CITMILC

Lab Receipt Information

05/02/2023 1045 SW

PO#:

Collection Information

Date:	05/02	2/2023	
Time:	0900	<u>E</u>	
By:	Russ	i	
Lab #:		20230502-095	
Locatio	on:	360 Remine Rd Mill City	INF

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

				EPA	Analys	sis
Analyte	Method	Acc* Results	Qual MRL	Units Limit	Date Time	Tech
Alkalinity, Total - 1927	SM2320 B	279.	10.	mg/l CaCO3	05/04/2023	AS
Bicarbonate Alkalinity	SM2320B	340.4	10	HC03	05/04/2023	AS
Hardness as CaCO3	SM2340C	86.	10.	mg/l CaCO3 250	05/04/2023	AS

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

K

ERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-096

 Location:
 360 Remine Rd Mill City Inf

05/22/2023

CITMILC

Lab Receipt Information 05/02/2023 1045 SW

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Ana	lysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	Fech
Inorganic Chemicals									
Antimony	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Arsenic	SM3113B		ND		0.002	mg/l	05/08/2023		bem
Barium	SM3113B	в	0.0109		0.0005	mg/l	05/12/2023	1515	cbb
Beryllium	SM3113B		ND		0.001	mg/l	06/05/2023		bem
Cadmium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Chromium	SM3113B		ND		0.02	mg/l	05/09/2023		bem
Fluoride	EPA300.0		7.41		0.2	mg/l	05/02/2023		bem
Lead	SM3113 B		ND		0.001	mg/l	05/15/2023		bem
Mercury	SM3112B		ND		0.001	mg/l	05/17/2023		bem

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Page 1 of 2

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Page: 2

LAB #: 20230502-096

096 (Cont)

CITMILC

							Analy	sis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Nickel	SM3113B		ND		0.05	mg/l	05/09/2023		bem
Nitrogen, Nitrate	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Nitrogen, Nitrite	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Selenium	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Sodium	SM3111B		50.2		1.0	mg/l	05/09/2023		as
Thallium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Aluminum	SM3113B		0.275		0.050	mg/l	05/30/2023		bem
Copper	SM3113 B		ND		0.002	mg/l	05/31/2023		bem
Iron	SM3111B		0.286		0.1	mg/l	05/31/2023		as
Manganese	SM3111B		ND		0.05	mg/l	05/31/2023		as
Silver	SM3113B		ND		0.01	mg/l	05/22/2023		bem
Zinc	SM3111 B		0.0547		0.01	mg/l	05/31/2023		bem

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Page 2 of 2

ANALYTICAL SUMMARY REPORT

June 09, 2023

Waterlab Corp 2603 12th St SE Salem, OR 97302-2154

Work Order: C23050297

Project Name: Mill City WWTP

Energy Laboratories, Inc. Casper WY received the following 1 sample for Waterlab Corp on 5/8/2023 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C23050297-001	20230502-094 Mill City WWTP	05/02/23 8:30	05/08/23	Waste Water	Metals by ICP/ICPMS, Drinking Water Metals Preparation by EPA 200.2 Gross Alpha, Gross Beta, Total Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager .

Report Approved By:

Cishley Wilson Ashley L. Wilson Project Managar Digitally signed by Ashley L. Wilson Date: 2023.06.09 14:46:22 -06:00

	Trust our People: Trust our Data:	Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711
CLIENT:	Waterlab Corp	
Project:	Mill City WWTP	Report Date: 06/09/23
Work Order:	C23050297	CASE NARRATIVE
ENEROX(LARO		

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Please verify ELI's certification coverage by visiting www.energylab.com.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Waterlab CorpProject:Mill City WWTPLab ID:C23050297-001Client Sample ID:20230502-094 Mill City WWTP

 Report Date:
 06/09/23

 Collection Date:
 05/02/23 08:30

 DateReceived:
 05/08/23

 Matrix:
 Waste Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analyzia Data (Ry
		•••••	Quanters		GOL	Meulou	Analysis Date / By
RADIONUCLIDES - TOTAL							
Uranium	ND	mg/L		0.0003	0.03	E200.8	05/17/23 04:23 / eli-b
Uranium, Activity		pCi/L		0.2	0,00	E200.8	05/17/23 04:23 / eli-b
RADIONUCLIDES, TOTAL		-					
Gross Alpha	-5	pCi/L	U			E900.0	05/27/23 02:30 / haw
Gross Alpha precision (±)		•	-			E900.0	05/27/23 02:30 / haw
Gross Alpha MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Gross Beta		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta precision (±)		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Radium 226	-0.05	•	U			E903.0	05/23/23 11:12 / kdk
Radium 226 precision (±)		pCi/L	-			E903.0	05/23/23 11:12 / kdk
Radium 226 MDC		pCi/L				E903.0	05/23/23 11:12 / kdk
Radium 228		, pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 precision (±)		pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 MDC		pCi/L				RA-05	05/18/23 13:08 / trs
adium 226 + Radium 228		pCi/L				A7500-RA	05/24/23 12:54 / dmf
adium 226 + Radium 228 precision (±)		pCi/L				A7500-RA	05/24/23 12:54 / dmf
Radium 226 + Radium 228 MDC		pCi/L				A7500-RA	05/24/23 12:54 / dmf

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Waterlab Corp				Work Order:	C2305	50297	Repo	rt Date	: 05/17/23	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_230515A
Lab ID:	QCS	Ini	tial Calibratio	on Verifica	tion Standard					05/17	/23 02:09
Uranium			0.0476	mg/L	0.00030	95	90	110			
Lab ID:	ccv	Co	ontinuing Cal	ibration Ve	rification Standar	d				05/17	/23 03:40
Uranium			0.0476	mg/L	0.00030	95	90	110			
Method:	E200.8									Batc	h: 178689
Lab ID:	MB-178689	2 Me	ethod Blank				Run: ICPMS	S207-B_230515	А	05/17	23 02:58
Uranium			0.00003	mg/L	0.00002						
Uranium,	, Activity		0.02	pCi/L	0.01						
Lab ID:	LCS4-178689	La	boratory Cor	ntrol Samp	le		Run: ICPMS	S207-B_230515	A	05/17/	23 03:04
Uranium			0.0932	mg/L	0.00030	93	85				
Lab ID:	B23050597-001AMS	54 Sa	mple Matrix	Spike			Run: ICPMS	S207-B_230515	A	05/17/	23 03:58
Uranium			0.0960	mg/L	0.00030	95	70	130			
Lab ID:	B23050597-001AMS	D Sa	mple Matrix	Spike Dup	licate		Run: ICPMS	S207-B_230515	A	05/17/	23 04:04
Uranium			0.102	mg/L	0.00030	101	70		6.0	20	

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp		*****	Work	Order:	C2305	50297	Repo	rt Date	: 06/01/23	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E900.0	*								Batch: G	GrAB-3184
Lab ID: Th230-GrAB-3184	3 Labo	ratory Col	ntrol Sample			Run: G542N	A-2_230523A		05/27/	/23 02:30
Gross Alpha		98	pCi/L		98	70	130			
Gross Alpha precision (±)		20	pCi/L							
Gross Alpha MDC		3.8	pCi/L							
Lab ID: Sr90-GrAB-3184	3 Labo	ratory Cor	ntrol Sample			Run: G542M	/I-2_230523A		05/27/	/23 02:30
Gross Beta		550	pCi/L		115	70	130		00/2//	20 02.00
Gross Beta precision (±)		56	pCi/L							
Gross Beta MDC		3.6	pCi/L							
Lab ID: MB-GrAB-3184	6 Meth	od Blank				Run: G542N	1-2_230523A		05/27/	23 02:30
Gross Alpha		-5	pCi/L						00/21/	23 02.30 U
Gross Alpha precision (±)		2	pCi/L							U
Gross Alpha MDC		3	pCi/L							
Gross Beta		-4	pCi/L							U
Gross Beta precision (±)		2	pCi/L							
Gross Beta MDC		4	pCi/L							
Lab ID: C23050241-001AM	S 3 Samp	e Matrix	Spike			Run: G542N	-2 230523A		05/27/	23 02:30
Gross Alpha		350	pCi/L		87	70	130			
Gross Alpha precision (±)		72	pCi/L							
Gross Alpha MDC		16	pCi/L							
Lab ID: C23050241-001AM	SD 3 Samp	le Matrix	Spike Duplicate			Run: G542M	-2_230523A		05/27/	23 02:30
Gross Alpha		400	pCi/L		99	70	130	12	30	00 02.00
Gross Alpha precision (±)		81	pCi/L					•=	00	
Gross Alpha MDC		18	pCi/L							
- The RER result is 0.42.										
ab ID: C23050585-010AM	S1 3 Samp	le Matrix S	Spike			Run: G542M	-2 230523A		05/31/3	23 08:46
Gross Beta		3800	pCi/L		118	70	130		0010112	10 00.40
Gross Beta precision (±)		380	pCi/L		_		100			
Gross Beta MDC		19	pCi/L							
ab ID: C23050585-010AM	SD 3 Samp	le Matrix S	Spike Duplicate			Run: G542M	-2 230523A		05/31/3	23 08:46
Gross Beta		3700	pCi/L		115	70	130	3.1	30	.0 00.40
Gross Beta precision (±)		370	pCi/L				100	0.1	00	
Gross Beta MDC		20	pCi/L							
- The RER result is 0.22.										

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp				Work Order:	C2305	0297	Report	Date	: 06/01/23	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0								<u> </u>	Batch: RA2	26-10894
Lab ID: LCS-RA226-10894	3 La	boratory Co:	ntrol Sample			Run: TENN	ELEC-3_2305128	3		23 11:12
Radium 226		11	pCi/L		114	70	130	-	• • • •	
Radium 226 precision (±)		2.3	, pCi/L							
Radium 226 MDC		0.22	pCi/L							
Lab ID: MB-RA226-10894	3 Me	thod Blank				Run: TENN	ELEC-3 230512E	2	05/23/	23 11:12
Radium 226		0.1	pCi/L						00/20/	U
Radium 226 precision (±)		0.2	pCi/L							0
Radium 226 MDC		0.2	pCi/L							
Lab ID: C23050423-001FDUP	• 3 Sa	mple Duplica	ate			Rup TENNI	ELEC-3_230512E	•	05/02/	23 11:12
Radium 226		1.9	pCi/L				LLLO-0_2000 120	, 5.6	30	23 11.12
Radium 226 precision (±)		0.48	pCi/L					0.0	30	
Radium 226 MDC - The RER result is 0.15.		0.23	pCi/L							

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

				•	······································						
Client:	Waterlab Corp				Work Order:	C2305	60297	Repor	t Date	: 06/01/23	
Analyte		Count	Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	RA-05									Batch: RA	228-7094
Lab ID:	LCS-228-RA226-1089	4 3 Lat	oratory Cor	ntrol Sample	•		Run: TENN	ELEC-3_230512	Δ		23 13:08
Radium 2	228		5.7	pCi/L		81	70	130	•	00/10/	20 10.00
Radium 2	228 precision (±)		1.4	pCi/L			10	100			
Radium 2	228 MDC		1.2	pCi/L							
Lab ID:	MB-RA226-10894	3 Met	hod Blank				Run [,] TENN	ELEC-3_230512	٨	05/19	23 13:08
Radium 2	228		2	pCi/L				200012	`	00/10/	23 13.00
Radium 2	28 precision (±)		0.8	pCi/L							
Radium 2	28 MDC		1	pCi/L							
Lab ID:	C23050423-001FDUP	3 Sar	nple Duplica	ate			Run: TENNI	ELEC-3_230512/	`	05/19/	23 13:08
Radium 2	28		2.2	pCi/L				200012	, 11	30	23 13:06
Radium 2	28 precision (±)		0.91	pCi/L					11	30	
Radium 2 - The RE	28 MDC R result is 0.19.		1.3	pCi/L							

Work Order Receipt Checklist

Waterlab Corp

C23050297

Login completed by:	Hannah R. Johnson		Date R	eceived: 5/8/2023
Reviewed by:	cjohnson		Rece	eived by: cch
Reviewed Date:	5/10/2023		Carri	er name: UPS
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes 📋	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🛄	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🔄	
Chain of custody agrees with	n sample labels?	Yes 📋	No 🔽	
Samples in proper container	/bottle?	Yes 🗹	No 📋	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🔲	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗌	No 🟹	Not Applicable
Container/Temp Blank tempe	erature:	12.8°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes 🛄	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes 🗹	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The sample collection time indicated on the COC is 09:00, the collection time listed on the sample bottles is 08:30, Beth requested we use the collection time on the sample bottles-Chantel S. Johnson

Chain of Custody & Analytical Request Record

Hust by Wolfe, fully out Data.			S	www.energylab.com	ergyla	0,com) } }		5		Page 1 of 1
Account Information (Billing Information)	~		Repor	t Inform	ation (//	different (Report Information (if different than Account Information)	Information			Com	Comments
Company/Name Vateriati Corp			Company/Nanie	/Nartie	T.							
Contact Beth Myers			Contact		Belh Wvers	1						
Phone 503-363-0473			Phone.				1					
Malling Address (2603: 12th St SE			Malling Address	idress.	-					r		Please do not return
State, Zip			City, State, Zip	, 2lp								
Email belti@waterlaboorp.com			Email	peq	@water	beth@watertabcorp.com	com					
CHard Copy DEmail	Rocelve Report DHard Copy	py memal	Receive F	Receive Report Cirtard Copy EEmail	rd Copy I	BÉmal)						
Purchase Order	Boltje Order		Special Rol	Special Roport/Formelar	AG. D.ET	D/EDT (e	CILEVEL N G NELAO. C EDD/EDT (conloct (aborator)	ov ⊡ Olher				
Project Information			Matrix Codes	odes				12.6	1			
Project Name, PWSID, Permit, etc. Mill City WWTP	1P		A. Ar W: Walar	1		 		najeanhay siekiniy	naisa			All-turnaround times are
Sampler Name Sampl	Sampler Phone (503) 363-04	0473	S Solls'	<u>م</u> د						, as _a		standard unless marked as RUSH.
Sampte Origin State Oregon	EPA/State Compliance II Yes	čes El No	 Vegetalion Bioassay 	fallon: Issay	58				···		1	Energy Laboratories MUST be contacted of for to
MiNING CLENTS, please indicate sample type. 11 ore tras been processed or refered, call before sanding.	ig: I ore (NOT ground of re	(jned)*	D. Other DW . When	eudlA	u 556/5	ü	etəs			<u> </u>	bəriəsii	RUSH sample submittal for charges and scheduling – See listructions Page
Sample Identification	Sun Collec	action	Number of	Matrix	نه ا	njue	i SSO				A 99	
A LUMBURG (MIRVAR, 810)	·	Tíme				IJ	eı				S	TAT STATE DATE OF OF DATE OF O
	5/2/23	9:00 am	4 W	<u>.</u>	<u>ر</u> ر	>	2	:				
										:		
		-			1-mi.a				:			
4 .											-	
			. <u>.</u>							- -		
3.				<u> </u>	<u></u> 							
												In the second second
0			;		~ ~ 7							
Oustody Reinquisited by (and) Record MUST Act 1 1 1 1 1 2 1 2 2	Date/Time	3	<u>е</u> . И. ⁷ .	Tratter		Received by (prini)	(10)20			Date(The		station of the second se
	Date Time	Stinaturi 1				A par Xag	Tabory to A	No.	1 6 0	C. C. S. Man	6	Bignatury
Shipped By Cooler (0(s) Custom States and Cooler (0(s)	eals Intect	Receipt Temp.	邂 —		Nuse of		Payment Type	Type		Vincential Andread	Rece	Receipt Number (Sector 14)
		0	2 >		N ×	000	Cash Check	Ж		\$		And Anna Anna Anna Anna Anna Anna Anna A
								-				

In certain bicumstances, samples submitted to Energy Laboratories, ind, may be subontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023

1045

SW

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-097

 Location:
 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Analys	is
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Synthetic Organic Contaminants								
Synthetic Organics, Regulated								
1,2-Dibromo-3-chloropropane	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Ethylene Dibromide	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Chlordane	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806 TJW
Endrin	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW
BHC-Gamma Lindane	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

CITMILC

LAB #: 20230502-097

097 (Cont)

Page: 2

							Analy	/sis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Heptachlor	EPA 508	В	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Heptachlor Epoxide	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Methoxychlor	EPA 508	в	ND		0.0000	mg/liter	05/10/2023	0806	TJW
Polychlorinated Biphenyls	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806	TJW
Toxaphene	EPA 508	в	ND		0.0003	mg/liter	05/10/2023	0806	TJW
2,4,5-TP Silvex	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dalapon	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dinoseb	EPA 515.3	в	ND		0.001	mg/liter	05/16/2023	0026	TJW
Pentachlorophenol	EPA 515.3	в	ND		0.0005	mg/liter	05/16/2023	0026	TJW
Picloram	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Alachlor	EPA 525.2	в	ND		0.0002	mg/liter	05/18/2023	1628	TJW
Atrazine	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Benzo(a)pyrene	EPA 525.2	в	ND		0.0001	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)phthalate	EPA 525.2	в	0.00901		0.002	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)adipate	EPA 525.2	в	ND		0.004	mg/liter	05/18/2023	1628	TJW
Hexachlorobenzene	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Hexachlorocyclopentadiene	EPA 525.2	в	ND		0.005	mg/liter	05/18/2023	1628	TJW
Simazine	EPA 525.2	в	ND		0.0004	mg/liter	05/18/2023	1628	TJW
Carbofuran	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Vydate	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Endothall	EPA 548.1	в	ND		0.01	mg/liter	05/17/2023	1726	TJW
Diquat	EPA 549.2	в	ND		0.01	mg/liter	05/11/2023	1548	TJW
2,4-D	EPA 515.3	в	ND		0.002	mg/liter	05/16/2023	0026	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Т	E	S	Т	R	Е	P	0	R	Т

		LAB	#: 2023	30502-	097	(Cont)	CITMILC	F	Page: 3	3
		#23. #	Acres (1997)	12455 18				Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units		Date Time	Т	ech
Glyphosate	EPA 547	В	ND		0.05	mg/liter		05/08/2023	1220	TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

the laboratory.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

Date: 05/02/2023 Time: 0900 By: Russ Lab #: 20230502-098 Location: 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

								Analysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date	Time	Tech
Volatile Organics, Regulated									
1,1,1-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,1,2-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,1-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2,4-Trichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2-Dichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2-Dichloropropane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	TJW
Benzene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	t TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Bitter E. Myers

Approved by:

Page 1 of 2

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023 1045 SW

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

CITMILC

LAB # : 20230502-098

98 (Cont)

Page: 2

							Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Carbon Tetrachloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
cis-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Dichloromethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Ethylbenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Monochlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
o-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
p-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Styrene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Tetrachloroethylene (PCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Toluene	E524.2	В	0.0496		0.0005	mg/liter	05/05/2023	0024	TJW
trans-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Trichloroethylene (TCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Vinyl Chloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Xylenes, Total	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Bitter E. Myers

-ATTACHMENT E ----

Groundwater Sampling Field Forms

Groundwater Sampling Field Log Mill City, Oregon Groundwater Sampling

	Date: 5 29 23											
									Well ID: GM1MW1			
Total			/	* shickor	8.5'		(X) 0.10					
Depth:	40.	2	17.9 m	TOC	945	22.3	5. S		3.6			
(ft)			(-) DTW: (ft)	•	Time	=	(X) 0.65	gal/feet	= Well Casing Volume			
Field Co	ondition	s: 601	Fi sunny									
Decont	aminatio	on: Alco	nox + tap w									
				PL	IRGE IN	FORMA	TION					
	Purge N	Aethod:	Waterra Hy	drolift l	Pump							
	Purge N	/lethod										
\checkmark	Refer to	o calibra	ition log this	date, Y	si # 4							
Pump S	uction D	Depth (f	t BTOC): N	34.2				Purge w	ater disposal: Drums			
Type of	Flow Th	nrough (Cell:		10 oz cu	р	х	YSI ProQu	attro Flow Through Cell			
Comme	ents/Exc	eptions	to SAP:									
Time	Purge Volume	Temp.	sc	DO	pН	ORP	Purge Rate	DTW				
nine	(gallons)	(°C)	(uS/cm)	(mg/L)	(mV)	(mL/min)	(ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)				
Stabilizati	on Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	24	1922	<100 NTU ideal			
10:35	Pump On	, Water F	Reaches the Pu	rge Bucke	et			Initial				
10:40	0.5	12.0	94.9	7.A0	6.76	139.9	0.75	18.0	med/32.3 NTU/ No color			
10:50	2.5	11.7	94.8	7.11	6.62	92.6	u	u	¥			
10:55	4.0	11-8	94.0	6.95	6.63	90.5	ч	и	17			
11 :105	4.5	11.6	93.7	6.25	6.48	91.6	16	и	mcd/24.5 NTU/NO COLOR			
(: (0	5.5	11.7	93.3	6.24	6.66	92,9	и	ti -	J. J.			
11 : 15	6.5	11.7	93.4	6.13	6.53	93.4	ц	u	ч			
11 : 20	7.5	11.7	93.3	6.02	6.52	93.8	и	и	U U			
:												
:												
(1)												
	Start Sam	pling										
	End Sam											
		~										

* VC=Very cloudy Cl=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

Laboratory Analytical Program Mill City, Oregon Groundwater Sampling

Date: 5 / 29 / 23	Time:	: 20					
Sampling Method (circle one):		dedicated purg	e tube disconne	cted from flow t	hrough cell		
	В	other:				-	
Sample I.D. <u> </u>	Number of sample containers (circle)	Volume of each container	Container Type	Pres.	Analy	tical Met	hod
							7
QAQC: Sample ID & Time>	Rotate dup lo	cation	I	11			
Dup = MW-14-MMYY Sampling Criteria (circle one):							-
Collect anytime: stabile paramete After 3 well casing volumes: stabil After 5 well casing volumes: unsta Pump dry: return anytime if there	e parameters bile paramet	s but uncontrolle ers with or with	ed/falling water out drawdown c	level ontrol		2 3 4	1.4
Comments:			8 e		5., ,		
		1	11	•			100
	k.		5				а. А. т.
exercises, Ph.P. 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,		0.	÷.		12	0	
101			1	÷ 7		12	
	-R			1.1	1.12		
		1.1	18 A		3.00		
COC: Client = Keller, Sampler = GS							
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville	, OR 97070			

Groundwater Sampling Field Log Mill City, Oregon

Groundwater Sampling

	Groundwater Sampling Date: 5/29/23											
									Well ID: GMS MWI			
Total Depth: (ft)	75.	7	60.0 JUTW: (ft)	11	LZO Time	15.7	(X) 0.16 (X) 0.65	gal/feet	2. ら = Well Casing Volume			
	ondition	s:	() D W. (11)		Time	-	1	Bullicer				
			nox + tap w	ash: Tar	rinse:	Dl rinse						
						FORMA						
\checkmark	Purge N	Aethod:	Waterra Hy	/drolift l	Pump							
	Purge N	/lethod:										
	Refer to	o calibra	tion log this	date, Y	'SI # 4							
Pump S	Suction D	Depth (f	t BTOC):					Purge w	ater disposal: Drums			
Type of	f Flow Th	nrough (Cell:		10 oz cu	р	х	YSI ProQu	attro Flow Through Cell			
Comme	ents/Exc	eptions	to SAP:									
Time	Purge Volume (gallons)	Temp. (°C)	SC (uS/cm)	DO (mg/L)	рН	ORP (mV)	Purge Rate (mL/min)	DTW (ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)			
Stabilizati	ion Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	144	E.	<100 NTU ideal			
12:30	Pump On	i, Water F	leaches the Pu	rge Bucke	et			Initial				
12:40	0.25	12.4	83.1	9.30	7.47	-27.2	0.16	կ	low-med/35/NTU/brown			
12:45	1.5	14.6	79.9	8.77	7.49	-26.6	м	u	10wmed/35/NTU/brown med/330NTU/brown			
n:57	3.0	11.7	80.2	8.99	7.35	-4.8	0.19	น	7			
13:02	4.0	14.8	74.6	6.93	7.35	-4.3	ι	μ	*1			
13:14	5.75	11.4	80.1	9.22	7.44	4.3	L.C.	ч	" / 130 NTU/ "			
13 : 18	7.0	11.0	80.2	9.36	7,40	4.5	11	11	h			
13 :23	8.5	10.9	80.5	9.55	7.36	6.1	ч	ч	" / 125 NTU/ "			
13:27	0.0	11.1	80.3	942	7.32	6.7	11	и	" /124 NTU/"			
:												
3												
13:27	Start Sam	npling										
13:30	End Sam	oling										
* * * * * * *			abthy Cloudy VSC-									

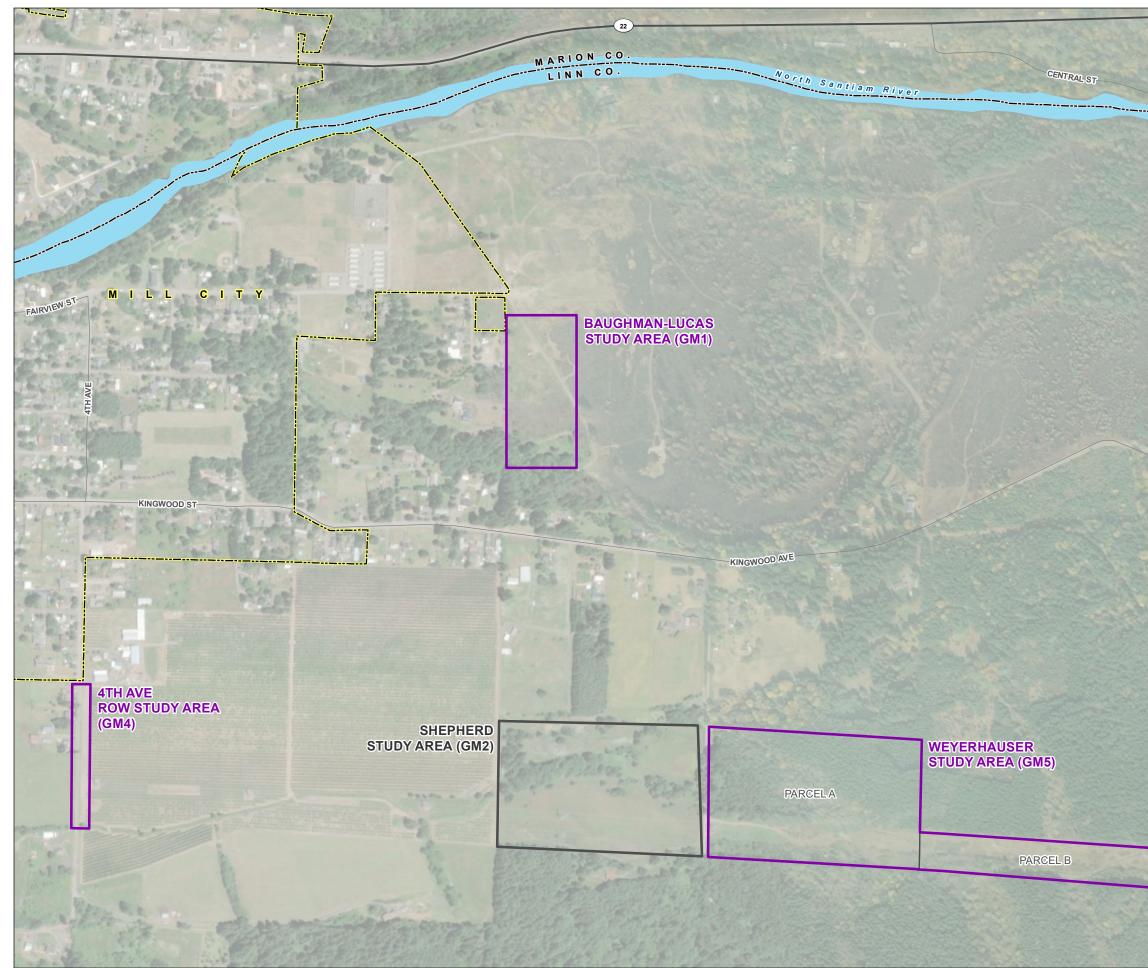
VC=Very cloudy Cl=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

Laboratory Analytical Program Mill City, Oregon Groundwater Sampling

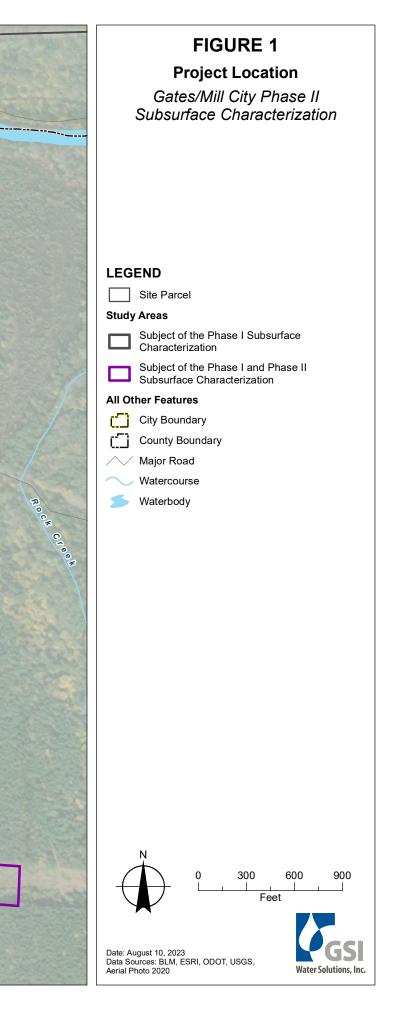
Date: 5 /29 /23	Time: 13	: 30					
Sampling Method (circle one):			e tube disconnec	ted from flow	through cell		
÷	В	other:	g) i	ю —			
Sample I.D. GM\5 MW 0523	Number of sample						
GMXMWXMMYY	containers (circle)	Volume of each container	Container Type	Pres.	Analy	tical Met	nod
				-			
			1				- NO
QAQC: Sample ID & Time>							
Dup = MW-14-MMYY	Rotate dup lo	cation					
Sampling Criteria (circle one):						-	
Collect anytime: stabile paramete						1	
After 3 well casing volumes: stabil	-					2	
After 5 well casing volumes: unsta						3	
Pump dry: return anytime if there	is adequate	volume for cont	ainers within 24	hours		4	
Comments:	2				1.1		
e etc. Also de la seconda			e e star de la				
P			198 - A 14	X	a (050)	S.	
<i>et .</i>			21.0	12.4	n gê	7	$\mathbb{D}[X_{1}]_{1}$
 a politica in transmissione 		·	n e e-			8 0	1. P
	2		21			11	
		8	98 ° 6'		÷.	1941	\$ L
COC: Client = Keller, Sampler = GS	I, 650 NE Hol	laday Street, Po	rtland, OR 97232	1_08			5. J
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville,	, OR 97070			

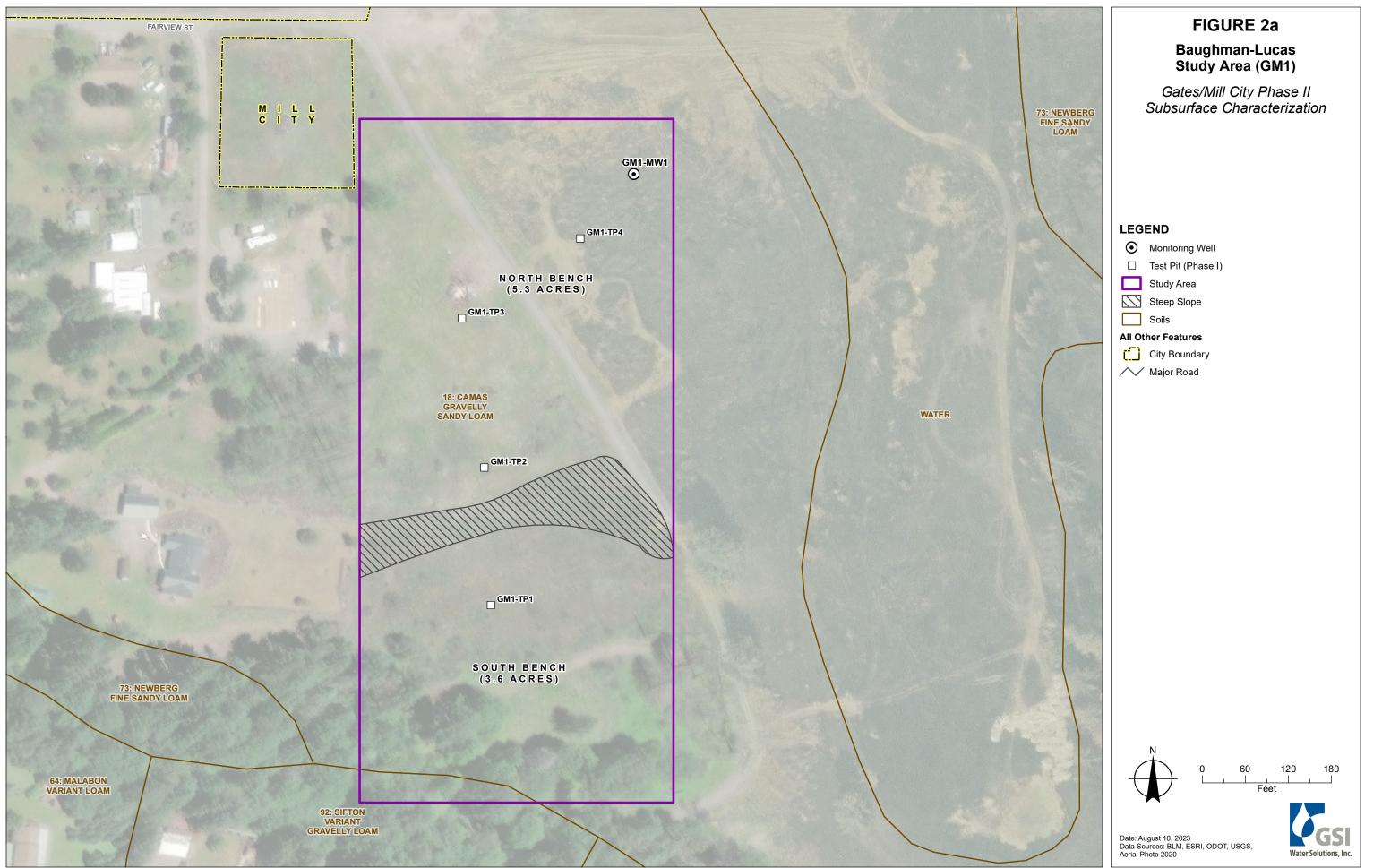
Groundwater Sampling Field Log Mill City, Oregon Groundwater Sampling

		Groundwater Sampling						Date: 5 29 23		
									Well ID: GM4MW1	
Total Depth: (ft)	41.6		<i>ち</i> , 0 (-) DTW: (ft)	I	名いら Time	26.6	(X) 0.65	gal/feet	4 .3 = Well Casing Volume	
Field Co	ondition	s: 651	F sunny							
Decont	aminatio	on: Alco	nox + tap w	ash; Tap	o rinse;	DI rinse				
	1			PL	JRGE IN	FORMA	TION			
	Purge N	/lethod:	Waterra Hy	drolift I	Pump					
	Purge N	Aethod:								
	Refer to	o calibra	ition log this	date, Y	'SI # 4					
Pump S	Suction E	Depth (f	t BTOC):					Purge w	ater disposal: Drums	
Type of	Flow Th	rough (Cell:		10 oz cu	р	Х	YSI ProQu	attro Flow Through Cell	
Comme	ents/Exc	eptions	to SAP:							
Time	Purge Volume (gallons)	Temp. (°C)	SC (uS/cm)	DO (mg/L)	рН	ORP (mV)	Purge Rate (mL/min)	DTW (ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)	
Stabilizati	on Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	100 100		<100 NTU ideal	
14:20	Pump On	, Water R	Reaches the Pu	rge Bucke	et			Initial		
14:25	2.0	13.9	206.8	0.93	7.60	-145.7	0.5	Y	med/397NTU/gray	
14:30	5.0	13.7	207.2	0.88	7.40	-184.5	ч	и	" /272NTU / ""	
14:35	7.0	13.8	205.6	0.87	7.54	-204.7	+1	4	1/183 NTU/ "	
14:40	[0,0]	13.8	204.5	0.82	7.51	-206.8	u	4	"/ 132 NTU / "	
14:45	12,5	13.7	204.(0.81	7.50	-207A	Ч	61	4/ 125 NTU / 4	
19:50	16.0	13.7	204.2	0.80	7.48	-200.5	11	μ	n/86.6 NTU/11	
(1)										
:										
	Start Sam	npling								
	End Sam									
				_						


* VC=Very cloudy CI=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

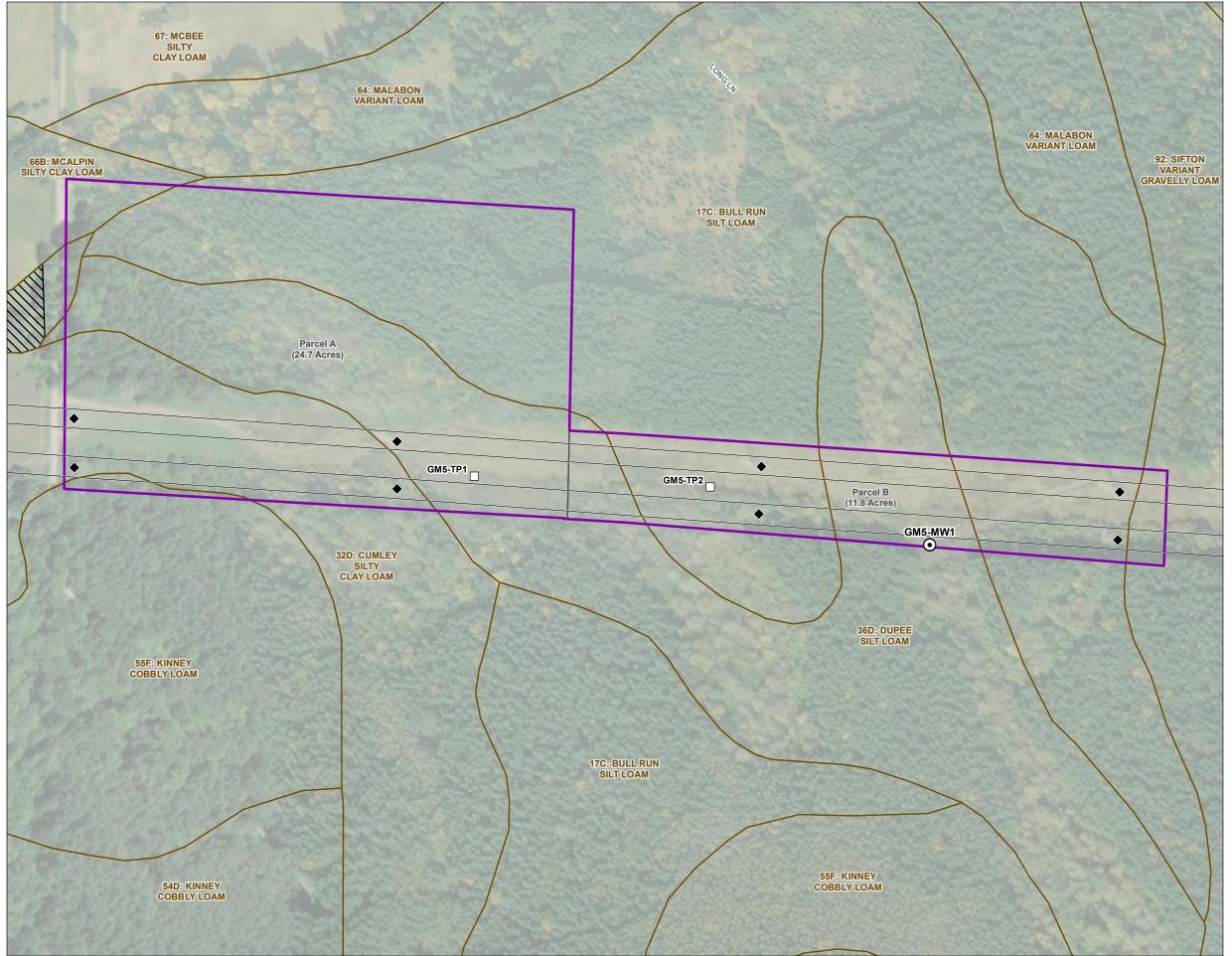
Laboratory Analytical Program Mill City, Oregon Groundwater Sampling


Date: 5 / 29 / 23	Time: 14	:55					
Sampling Method (circle one):	® '	dedicated purg	e tube disconnec	ted from flow t	hrough cell		
	В	other:					
Sample I.D. GM4MW1 0523 GWXXMWXMMYY	Number of sample containers	Volume of		- 14			
G	(circle)	each container	Container Type	Pres.	Analy	tical Metl	nod
							-
QAQC: Sample ID & Time>	AT						
Dup = MW-14-MMYY	Rotate dup lo	cation					
Sampling Criteria (circle one):						~	
Collect anytime: stabile paramete						(1)	
After 3 well casing volumes: stabi	•		-			2	
After 5 well casing volumes: unsta						3	
Pump dry: return anytime if there	e is adequate	volume for cont	ainers within 24 h			4	
Comments:	1	A Torre		1	×	- 21	
8 Martin I and	58	5 - C		-ef 72		-	1. I.
- 11 4 12 - 3			5.1.86	11 11 11 11 11 11 11 11 11 11 11 11 11	÷ 2		14 L.
1 I I I I I I I I I I I I I I I I I I I		1	53		¥.	1 N.	·* }
	12 C	> a 12	400		ä.,	M	
	Ξ.	$\mu \sim \infty$	n frei My	i Ne y	ų. 1	1.44	$\{X_{1}, u_{1}\}$
COC: Client = Keller, Sampler = GS							
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville,	OR 97070			


-ATTACHMENT F

MOUNDSOLV Model Results

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure1_Project_Location.mxd, abarry



Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2a_Baughman_Lucas_Site_GM1.mxd, abarry

Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2b_4th_Ave_ROW_Site_GM4.mxd, abarry

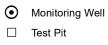

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2c_Weyerhaeuser_Site_GM5.mxd, abarry

FIGURE 2c

Weyerhaeuser Study Area (GM5)

Gates/Mill City Phase II Subsurface Characterization

LEGEND

- Powerline Tower
- Powerline

Site Parcel

Soils

All Other Features

City Boundary

0 125 250 375 Feet

Date: August 10, 2023 Data Sources: BLM, ESRI, ODOT, USGS, Aerial Photo 2020

ATTACHMENT A

Monitoring Well Boring Logs

GSI Water Solutions, Inc.				LOG ID: GM1-MW1					
PROJECT	: Santiam Canyon Infiltration Evaluation	GROUND SURFACE ELEVATION AND DATUM: 851 feet amsl							
BORING LOCATION	Mill City, OR	TOTAL C		ft):	DATE STARTED : 5/19/2023				
DRILLING CONTRACTOR	: Holt	LOGGEE	BY:		DATE FINISHED: 5/22/2023				
SAMPLING METHOD	Continuous Core	DEPTH T WATER		FIRS 19.	ST: COMPLETED:				
DRILLING METHOD	Sonic								
	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION				
0 1 2 GM 3 GM 4 GW-GM 5 - 6 - 7 - 8 - GW-GM - - - - - - - - - - - - -	 0 - 1.5 ft: Very soft, dark brown, dry, silty GRAVEL with sand (GM), organics, low plasticity, sand is very fine to course, subangular to subrounded, gravel is fine to coarse, subangular to rounded [FILL] 1.5 - 3.0 ft: Medium stiff, dark brown, moist, silty GRAVEL (GM), organics, medium plasticity, sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded (QUATERNARY MIDDLE TERRACE DEPOSITS] 3.0 - 4.0 ft: Soft, dark brown to black, dry to moist, silty GRAVEL with sand (GM), odor of charcoal, organics, low plasticity, sand is fine to coarse, angular to subrounded (QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft: Very soft, dark grey, dry, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Gray, dry, increase in coarse gravel/cobbles at 6.5 ft 5.0 - 12.0 ft: Very soft, brown to dark brown to grey, dry to wet, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 	70 50 40 60	<15 <10 25 30 15	15 40 <10 	Cement Surface Seal				
	 Increase in moisture (moist to wet) at 11 ft 								

GSI	Water	Solutions, Inc.	LO	g id:	GM	1-MW	1		
Р	ROJECT:	Santiam Canyon Infiltration Evaluation	GROUNI 851 fee		ACE ELE	VATION AN	D DATUM:		
BORING LO	CATION:	Mill City, OR	TOTAL I 40		ft):		DATE STARTED : 5/19/2023		
DRILLING CONTR	RACTOR:	Holt	LOGGEI	OBY:			DATE FINISHED: 5/22/2023		
SAMPLING N	NETHOD:	Continuous Core	DEPTH T		FIRS 19.	ST:	COMPLETED: 14.9		
	IETHOD:	Sonic			.,.	0			
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES		AS-BUILT CONSTRUCTION		
12 13 14 15 16 17 18 19 20 21 10 10 10 10 10 10 10 10 10 1	R N N	 Wet at 14.0 ft 12.0 - 18.0 ft: Very soft, dark brown, moist, well graded GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] No return from 15 to 20 ft. Recovered with clean-out. 18.0 - 20.0 ft: Very soft, dark brown, moist, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Wet at 19.5 ft 20.0 - 22.5 ft: NO RETURN 22.5 - 23.0 ft: Very soft, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to very coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 23.0 - 24.0 ft: Very soft, dark brown, moist, well graded GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 24.0 ft: Very soft, dark brown, wet well graded GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 	80 80 70 50 100	15 20 20 <50 0	<5 <5 10 <5 <5 <5 <5		Sodium Bentonite		
26 26 27 27 27	© 0 0 0	 24.0 - 25.0 ft: Very soft, dark brown, wet, well graded GRAVEL (GW), low plasticity, gravel is very fine to very coarse, subangular to rounded, cobbles <6 in, subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 25.0 - 26.0 ft: NO RETURN 26.0 - 27.5 ft: Very soft, dark brown, wet, well graded SAND 	o	100			Slurry		
SI Water Solut	ions Inc	(SW), low plasticity, sand is very fine to coarse, subangular to Portland, OR 503.239.8799		ioiect N	0. 913.0	001	Page 2 of 3		

GSI Water Solutions, Inc.		LOG ID: GM1-MW1					
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND SURFACE ELEVATION AND I 851 feet amsl					
BORING LOCATION:	Mill City, OR	TOTAL 40	DEPTH (i	ft):		e started : //2023	
DRILLING CONTRACTOR:	Holt	LOGGE J. Hall	D BY:			E FINISHED: 2/2023	
SAMPLING METHOD:	DEPTH TO FIRST:				PLETED:		
DRILLING METHOD:	Sonic	1					
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES		BUILT ISTRUCTION	
28- 29- 30-	rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 27.5 - 30.0 ft: Very soft, dark brown, wet, well graded GRAVEL (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	100	0	<5		Bentonite Chips	
30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.0 - 31.5 ft: Very soft, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	0	100	<5		10-20 Filter Pack 2-Inch 10-Slot	
32- 33- 34- GW	Increase in silt/decrease in gravel at 33.0 ft 31.5 - 35.0 ft: Soft, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5		PVC Screen	
35- 	35.0 - 36.0 ft: Very soft, dark brown to dark gray, wet, well graded SAND with silt (SW-SM), sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subrounded to rounded [QUATERNARY MIDDLE TERRACE	10	80	10			
37	\DEPOSITS] 36.0 - 37.0 ft: Soft, brown to gray, wet, well graded GRAVEL (GW), gravel is fine to coarse, subrounded to rounded \[QUATERNARY MIDDLE TERRACE DEPOSITS]	90 	<5	<5			
38- GW, 39-	Increase in cobbles at 38.0 ft 37.0 - 40.0 ft: Soft, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5			
40 41 42 43	Total Depth = 40.0 ft	L	<u> </u>			D = 40.0-feet	
GSI Water Solutions, In	c. Portland, OR 503.239.8799	P	roject N	lo. 913.0	01	Page 3 of 3	

FROME	er Solutions, Inc.	LOC	g id	: GM4	4-MW1		
PROJEC	Santiam Canyon Infiltration Evaluation		GROUND SURFACE ELEVATION AND DATUM: 880 feet amsl				
BORING LOCATIO	I: Mill City, OR	TOTAL D	EPTH (ft):	DATE STARTED : 5/19/2023		
DRILLING CONTRACTO	e: Holt	LOGGEE	BY:		DATE FINISHED: 5/19/2023		
SAMPLING METHO	: Continuous Core	DEPTH T		FIRS 10			
DRILLING METHO	D: Sonic			10	12.1		
	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION		
0 1 2 3 4 5 ML 6 GM 5 ML 6 GW 6 GW	 0.0 - 1.5 ft: Soft to medium stiff, dark brown, moist to dry, SILT (ML), organics, rootlets, low plasticity [FILL] 1.5 - 4.0 ft: Medium stiff to stiff, dark brown to red, moist, SILT (ML), high plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 5.0 - 5.5 ft: Medium stiff to stiff, dark brown to red, moist, SILT (ML), high plasticity, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 5.0 - 5.5 ft: Medium stiff to stiff, dark brown to red, moist, SILT (ML), high plasticity, gravel is fine to coarse, subangular to rounded (GW-GM), low to medium plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded (QUATERNARY MIDDLE TERRACE DEPOSITS] 7.5 - 10.0 ft: Very soft, dark brown to gray, dry to moist, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, angular to subrounded, cobbles (< 6 	_/ <5 _	0 0 25 0 20 15	100 100 35 100 10 <5	Locking Well Cap Monument Sand Fill B" Steel Well Monument Cement Surface Seal Cement Surface Seal Cement Surface Seal Bentonite/Cement Slurry Cement Surry		
10 11 11 12	inches), low plasticity 10.0 - 12.0 ft: Very soft, wet, dark brown, silty GRAVEL with sand (GM), sand is fine to coarse, gravel is fine to coarse, subangular to subrounded, cobbles (< 6 inches), subrounded to rounded, low plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	15	25			
SI Water Solutions, I	nc. Portland, OR 503.239.8799	Pr	ject N	lo. 913.0	001 Page 1 of 3		

EXAMPLE 1 Santiam Canyon Infiltration Evaluation		LOG ID: GM4-MW1				
PROJECT	: Santiam Canyon Infiltration Evaluation	GROUNE 880 fee		ACE ELEV	ATION AND DATUM:	
BORING LOCATION	Mill City, OR	total e 40)EPTH (ft):	DATE STARTED : 5/19/2023	
DRILLING CONTRACTOR	Holt	LOGGED J. Hall	BY:		DATE FINISHED: 5/19/2023	
SAMPLING METHOD	Continuous Core	DEPTH T WATER		FIRS 10	T: COMPLETED: 12.1	
DRILLING METHOD	Sonic					
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION	
13- GW	12.0 - 14.0 ft: Very soft, dark brown to gray, dry to moist, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, angular to subrounded, cobbles (<6 inches), low plasticity	80	15	<5		
14 15 16 16	14.0 - 16.0 ft: Medium soft, moist to dry, dark brown to gray, silty GRAVEL with sand (GM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, angular to subrounded, some cobbles (< 8 inches), subrounded to rounded, low plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	20	20		
17- 17- 18- 18-	16.0 - 19.0 ft: Medium stiff, dark brown to gray, moist to wet, well graded GRAVEL (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	90	10	<5		
19 GW-GM 20	19.0 - 20.0 ft: Medium stiff, dry to moist, brown to gray, well graded GRAVEL with silt (GW-GM), low plasticity, very fine to coarse sand, fine to coarse gravel, subangular to rounded gravel, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	10	10		
21- 22- GW	20.0 - 23.0 ft: Soft, dark brown, very wet, well graded GRAVEL with sand (GW), low to medium plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<5		
$23 \xrightarrow{0} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	23.0 - 26.0 ft: Very soft, dark brown, moist, well graded SAND with gravel (SW), low plasticity, sand is fine to coarse, gravel is fine to coarse, subrounded to subangular, cobbles (< 4 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	35	60	<5		
26 27 GW-GM 28	26.0 - 28.0 ft: Very stiff, brown to gray, dry to moist, well graded GRAVEL with silt (GW-GM), trace sand, sand is fine to coarse, gravel is subangular to rounded,cobbles (<8 inches), subrounded to rounded, low to medium plasticity [QUATERNARY MIDDLE TERRACE DEPOSITS]	90	<5	10	- Bentonite Chips	
SI Water Solutions, Ir	28.0 - 29.0 ft: Very soft, brown to gray, dry, silty GRAVEL c. Portland, OR 503.239.8799			lo. 913.0	D01 Page 2 of 3	

PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM4-MW1					1
PROJEC	T: Santiam Canyon Infiltration Evaluation			SURFA amsl	CE ELEV	ATION AN	ID DATUM:
BORING LOCATIO	N: Mill City, OR	тот <i>і</i> 40	AL DI	EPTH (f	t):		DATE STARTED: 5/19/2023
DRILLING CONTRACTO	R: Holt	LOG J. H	GED all	BY:			DATE FINISHED: 5/19/2023
SAMPLING METHO	D: Continuous Core	DEP	тн то) it bgs)	FIRS 10	T:	COMPLETED: 12.1
DRILLING METHO	D: Sonic	1					
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations		% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
29	with sand (GM), trace ash, sand is fine to coarse, gravel is fine to coarse, subangular to subrounded, cobbles (< 4		60	20	20		
29 	inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 29.0 - 30.0 ft: Soft, dark brown, moist, silty SAND with grave (SM), ash, low to medium plasticity, sand fine to coarse, subangular to subrounded, gravel is fine to coarse,		35	45	20		10-20 Filter Pack
31	subangular to subrounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS 30.0 - 31.0 ft: Soft, dark brown to gray, moist, well graded GRAVEL with silt (GW-GM), low plasticity, sand is fine to		80	10	10		
32	coarse, subangular to rounded, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS 31.0 - 32.5 ft: Soft to stiff, dark brown to gray, dry to moist,	u /	30	60	10		2-Inch 10-Slot PVC Screen
33- 34- 	well graded SAND with silt and gravel (SW-SM), low to medium plasticity, sand is fine to coarse, gravel is fine to coarse, rounded to angular, cobbles (< 4 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 32.5 - 35.0 ft: Stiff, gray, moist, SILT with gravel (ML), medium plasticity, sand is fine to coarse, rounded to angular gravel is fine to coarse, rounded to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]		20	10	70		- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
35 GW-GM 36	35.0 - 36.0 ft: Stiff, brown to gray, moist to wet, well graded GRAVEL with silt (GW-GM), trace sand, sand is fine to coarse, gravel is subangular to rounded, cobbles (≤ 8 inches), Increase in moisture with depth [QUATERNARY MIDDLE TERRACE DEPOSITS]		90	<5	10 		
37– 38– GM 39–	36.0 - 40.0 ft: Soft, dark brown, wet, silty GRAVEL with sand (GM), low to medium plasticity, sand is fine to coarse, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	I	50	30	20		
40	Total Depth = 40.0 ft	[l			^r •⊢_TD = 40.0 feet
41							
42							
43							
44							
GSI Water Solutions,	nc. Portland, OR 503.239.8799		Pro	ject N	0. 913.(001	Page 3 of 3

PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM5-MW1					
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUND 1005 fe			VATION AND DATUM:	
В	ORING LOCATION:	Mill City, OR	TOTAL D 76	EPTH (f		DATE STARTED: 5/15/2023 DATE FINISHED:	
DRILLI	NG CONTRACTOR:	Holt	J. Hall		FIRS	5/15/2023	
SA	AMPLING METHOD:	Continuous Core	DEPTH T WATER (60	ST: COMPLETED: 57.5	
D	ORILLING METHOD:	Sonic					
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION	
0 1 1 2 3 4 5 1 6 1 7 1 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 0.0 - 3.5 ft: Medium stiff, dark brown, moist, SILT (ML), medium plasticity, rootlets, trace sand is medium to coarse [FILL] 3.5 - 4.5 ft: Stiff, dark brown, moist to dry, SILT (ML), low plasticity, rootlets, charcoal, trace sand is medium to coarse, trace gravel is medium to coarse [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.5 - 6.0 ft: Stiff, dark brown, moist, gravelly SILT with sand (ML), medium to high plasticity, trace charcoal, few sand, fine to coarse, some gravel is fine to coarse, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 6.0 - 8.0 ft: Stiff, dark brown, moist to dry, gravelly SILT with sand (ML), some sand is fine to coarse, gravel is fine to coarse, rounded to subangular, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] 8.0 - 12.0 ft: Medium stiff, dark brown, moist, silty GRAVEL 	0 0 <5 20 25		 100 70 60	Locking Well Cap Monument Sand Fill 8" Steel Well Monument Cement Surface Seal 6-inch Borehole Bentonite/Cement Slurry 2-inch Nominal Diameter Schedule 80 PVC Casing	
10 11 11	GM · · ·	with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	20	40		
⊥ SI Wa	ater Solutions, Inc	. Portland, OR 503.239.8799	Pro	oject N	0. 913.0	001 Page 1 of 5	

	GSI Water	Solutions, Inc.	LOC	g id	: GM	5-MW1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNI 1005 fe			VATION AND DATUM:
ВС	ORING LOCATION:	Mill City, OR	total e 76)EPTH (ft):	DATE STARTED : 5/15/2023
DRILLIN	IG CONTRACTOR:	Holt	LOGGEE J. Hall	BY:		DATE FINISHED: 5/15/2023
SAI	MPLING METHOD:	Continuous Core	DEPTH T WATER		FIRS 60	
DF	RILLING METHOD:	Sonic				
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
12	GM	12.0 - 17.5 ft: Medium stiff to soft, dark brown, moist, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, angular to subangular, gravel is fine to coarse, angular to subangular, cobbles (< 6 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	40	20	
18- 	. GM	17.5 - 19.5 ft: Medium stiff to soft, dark brown, moist to dry, silty GRAVEL with sand (GM), medium to high plasticity, sand is fine to coarse, subrounded to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	20	20	
20- 	GM .	19.5 - 21.0 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	20	40	
22– 23– 24– 25– 26–	GM	21.0 - 33.0 ft: Medium stiff to soft, dark brown, moist to dry, silty GRAVEL with sand (GM), medium to high plasticity, sand is fine to coarse, subrounded to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches),	60	20	20	
 GSI Wat	ter Solutions, Inc		Pr	ject N	lo. 913.(.001 Page 2 of 5

PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM5-MW1					
PROJEC	: Santiam Canyon Infiltration Evaluation	GROUNE 1005 fe			VATION A	ND DATUM:	
BORING LOCATION	: Mill City, OR	total d 76	EPTH (I	t):		DATE STARTED: 5/15/2023	
DRILLING CONTRACTOR	: Holt	LOGGED J. Hall	BY:			DATE FINISHED: 5/15/2023	
SAMPLING METHOD	: Continuous Core	DEPTH T WATER (O ft bgs)	FIRS 60	ST:	COMPLETED: 57.5	
	: Sonic						
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION	
28- 29- 30- 31- 32- 33-	subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Large broken cobbles (< 8 inches) at 28.0-feet						
34- 35-	33.0 - 36.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular, cobbles (< 8 inches), angular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<15			
36 GM 37	36.0 - 37.5 ft: Medium stiff, dark brown, moist, silty GRAVEL with sand (GM), high plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 37.0 - 37.5 ft: NO RETURN	- 40 	20	40 			
38– 39– 40– 41– GW	37.5 - 45.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular,	80	15	<15			
42-43-	cobbles (< 8 inches), angular to rounded [QUATERNĂRY MIDDLE TERRACE DEPOSITS]						
SI Water Solutions, I	nc. Portland, OR 503.239.8799		Ject N	0. 913.	001	Page 3 of 5	

FROJECT	r Solutions, Inc.	LOC	G ID:	GM	5-MW1
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND 1005 fe			VATION AND DATUM:
BORING LOCATION	Mill City, OR	TOTAL D 76	EPTH (f	ft):	DATE STARTED : 5/15/2023
DRILLING CONTRACTOR	Holt	LOGGED J. Hall	BY:		DATE FINISHED: 5/15/2023
SAMPLING METHOD:	Continuous Core	DEPTH T WATER (FIRS 60	
DRILLING METHOD:	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
46	45.0 - 47.5 ft: Soft, dark brown, moist to dry, silty GRAVEL (GM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	<10	30	
48- 49- 50- 51- 52- 53- 54- 55- GW 56- 56- 57- 58- 59-	47.5 - 62.0 ft: Very soft, dark brown to gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, subrounded to angular, gravel is fine to coarse, subrounded to angular, cobbles (< 8 inches), angular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<15	Bentonite Chips
GSI Water Solutions, In	c. Portland, OR 503.239.8799			0. 913.0	

PROJECT: Santiam Canyon Infiltration Evaluation GI			LOC	LOG ID: GM5-MW1				
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNE 1005 fe			VATION AND DATUM:		
В	ORING LOCATION:	Mill City, OR	TOTAL D		DATE STARTED : 5/15/2023			
DRILLIN	NG CONTRACTOR:	Holt	LOGGEE J. Hall	BY:		DATE FINISHED: 5/15/2023		
SA	MPLING METHOD:	Continuous Core	DEPTH T		FIRS 60			
D	RILLING METHOD:	Sonic						
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION		
60 -		Moist to wet at 60.0-feet		0,	0			
62 63 64 64	GM	62.0 - 65.0 ft: Medium stiff to soft, dark brown, wet, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to angular, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	<40	20	10-20 Filter Pack		
66	NR	65.0 - 66.5 ft: NO RETURN				2-Inch 10-Slot PVC Screen		
67	GM	66.5 - 68.0 ft: Medium stiff to soft, dark brown, wet, silty GRAVEL with sand (GM), medium plasticity, sand is fine to coarse, subangular to angular, gravel is fine to coarse, subangular to subrounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	40	<40	20			
68 	SM	68.0 - 70.0 ft: Soft, dark brown, wet, silty SAND with gravel (SM), low to medium plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, subangular to subrounded, few cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	30	35	35			
70 	SW-SM	70.0 - 72.0 ft: Very Soft, dark brown, moist to wet, well graded SAND with silt and gravel (SW-SM), sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded, few cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	30	60	<10			
72 	GW	72.0 - 73.0 ft: Very Soft, gray, dry, well graded GRAVEL with silt and sand (GW), low plasticity, sand is very fine to coarse, subangular to angular, gravel is fine to coarse, subangular to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	25				
74	. GM	73.0 - 76.0 ft: Very Soft, dark brown, dry, silty GRAVEL (GM), low plasticity, sand is fine to coarse, angular to subangular, gravel is fine to coarse, angular to subrounded, cobbles (< 8 inches), subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	70	<10	20	Bottom of Screen = 75.0-feet		
76		Total Depth = 76.0-feet				TD = 76.0-feet		
SI Wa	ter Solutions, Inc	. Portland, OR 503.239.8799	Pr	oject N	lo. 913.	001 Page 5 of 5		

-ATTACHMENT B----

Soil Physical Parameters

MEMORANDUM

August 10, 2023

TO: Matt Kohlbecker, GSI Water Solutions, Inc.

FROM: Jason Keller, GeoSystems Analysis, Inc.

RE: Gates – Mill City Borehole Sample Testing

INTRODUCTION

Geosystems Analysis, Inc. (GSA) completed physical and hydraulic testing of borehole samples collected from the Gates and Mill City, Oregon area in support of the treated wastewater infiltration feasibility assessment being completed by GSI Water Solutions (GSI) and Keller and Associates. Boreholes were drilled at three potential infiltration basin locations (Figure 1):

- Baughman Lucas (GM1)
- 4th Ave Right of Way (ROW) (GM4)
- Weyerhaeuser (GM5)

This technical memo provides test methods and results for physical and hydraulic testing performed on sonic core samples by GSA and its subcontractor.

2

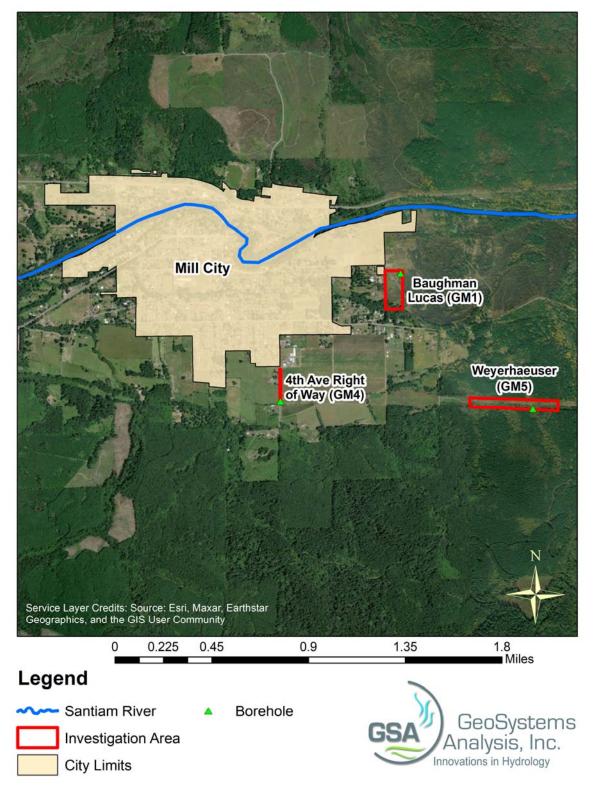


Figure 1. Borehole locations

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

METHODS

From May 15th through 19th, GSI supervised the drilling of three boreholes near Mill City, Oregon. Borehole locations are shown in Figure 1. Drilling was done by Holt Services Inc. using a track mounted sonic drill rig with a 5-inch inside diameter core barrel and 4.18-inch inside diameter sampler. The boreholes were drilled to the water table and completed as monitoring wells. Additional details of the drilling and monitoring well completion is provided in GSI (2023).

Sonic core were collected in approximately 2.5-ft lengths and placed in plastic sleeves. The length and weight of each 2.5-ft core section was recorded and then the core sample bags were opened, photographed, logged, and sampled. Geologic logging was conducted by GSI on each 2.5-ft core run to estimate major particle size fractions. Borehole logs are presented in GSI (2023).

Sub-samples were collected from horizons with distinct textural, color, and water content properties and placed in a sealed and labeled freezer bag for laboratory testing. Table 1 provides the test type, method, laboratory, and standard for all tests conducted on the samples. Sample testing methods are described below.

Test Type	Test Method	Testing Laboratory	Test Standard ¹	Samples Tested
Physical	Particle Size Distribution	GSA, Tucson, AZ	ASTM D6913-17 / ASTM D7928-17	GM1 = 2, GM4 = 2, GM5 = 2
Filysical	Specific Gravity	GSA, Tucson, AZ	ASTM D854-014	GM1 = 1, GM4 = 1, GM5 = 1
	Gravimetric Water Content	Oregon State University, Corvallis, OR	ASTM D2216-19	GM1 = 10, GM4 = 7, GM5 = 19
Hydraulic	Rigid-Wall Saturated Hydraulic Conductivity	GSA, Tucson, AZ	ASTM D5856-15	GM1 = 3, GM4 = 3, GM5 = 3

Table 1.	Laboratory tes	ts conducted
----------	----------------	--------------

¹American Society for Testing and Materials, Volume 4.08. 2009. West Conshohocken, Pennsylvania

Particle Size Distribution

Particle size distribution (PSD) testing was conducted by GSA on two samples from each borehole. Sand, silt, and clay fractions were determined using wet sieve and hydrometer methods (ASTM D6913-17, ASTM D7928-17).

Particle Density

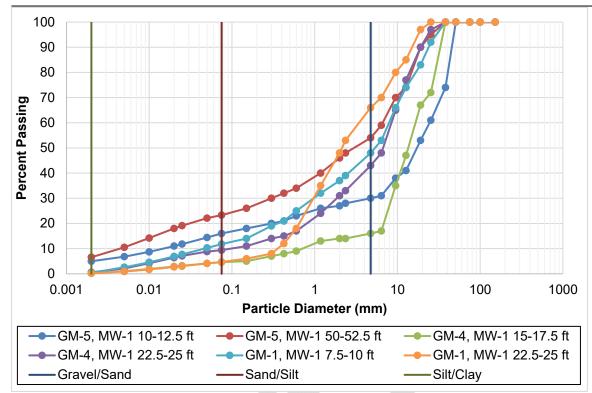
Particle density measurements were conducted by GSA on one sample from each borehole. The sample was sieved to pass the #10 mesh (2 mm) sieve and 10 grams of sample passing the #10 mesh was used for particle density testing using the pycnometer method (ASTM D854-14).

Gravimetric Water Content

Gravimetric water content measurements were conducted by Oregon State University on a total of 36 samples using the oven dry method (ASTM D2216-19). Approximately 500 grams of each sample was weighed, placed in an oven at 110 degrees Celsius and dried until repeated water content measurements indicate a constant sample mass was achieved.

Saturated Hydraulic Conductivity

Saturated hydraulic conductivity (K_{sat}) tests were conducted by GSA using a 2-inch diameter by 3inch-high rigid wall cell (ASTM D5856-15). The test cells were packed to a dry bulk density approximating the measured bulk density of the core sample from which the sample was taken. The packed test cells were saturated by upward infiltration with tap water and testing was performed with tap water.


RESULTS

Calculated core sample dry bulk density and laboratory results are summarized below. Complete laboratory results are provided in Appendix A and Appendix B.

Particle Size Distribution (PSD)

PSD testing results are shown in Figure 2. Table 2 provides percentages for gravel (>4.75 mm), sand (4.75 mm to 0.075 mm), silt (0.075 mm to 0.002 mm), and clay (<0.002 mm). All samples had a large gravel fraction of 34% or greater. The GM5 samples were finer textured than the GM4 and GM1 samples, with percent silt plus clay being 16% or greater compared for the GM5 samples, 11.8% or less for the GM1 samples and 9.4% and less for the GM4 samples.

5

Figure 2. Particle size distribution

Table 2. Percent gravel,	sand,	silt,	and	clay
--------------------------	-------	-------	-----	------

Particle Size	GM5, MW-1 10- 12.5 ft	GM5, MW-1 50- 52.5 ft	GM4, MW-1 15- 17.5 ft	GM4, MW-1 22.5-25 ft	GM1, MW-1 7.5-10 ft	GM1, MW-1 22.5-25 ft
% Gravel (>4.75 mm)	70.0	46.0	84.0	57.0	52.0	34.0
% Sand (4.75 - 0.075 mm)	14.0	30.7	11.4	33.6	36.2	61.3
% Silt (0.075 - 0.002 mm)	11.0	16.7	4.4	8.8	11.4	4.5
% Clay (<0.002 mm)	5.0	6.6	0.2	0.6	0.4	0.2

Particle Density

Error! Reference source not found. provides particle density results. Particle density ranged from 2.67 g/cm³ to 2.81 g/cm³.

Sample	Particle Density (g/cm ³)
GM1 MW1 7.5-10	2.72
GM4 MW1 15-17.5	2.81
GM5 MW1 50-52.5	2.67

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

Water Content and Bulk Density

Core sample calculated bulk density and measured water content for GM1, GM4, and GM5 are presented in Figure 3, Figure 4, and Figure 5, respectively. The water content was variable and a function of soil texture and whether the sample was collected from below the water table. Finer textured soil layers tend to have greater water content than coarser textured soils. The observed depth to groundwater at GM1, GM4, and GM5 was approximately 21 ft, 14 ft, and 61 ft below ground surface. The large variability in water content at GM5 is likely due to differing layers of fine textured soil overlaying less fine textured soils.

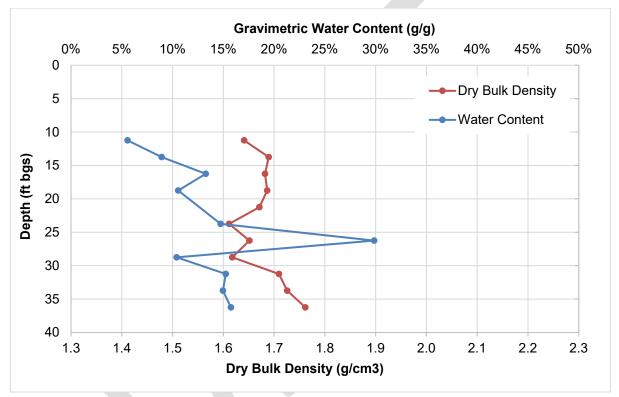


Figure 3. GM1 dry bulk density and water content

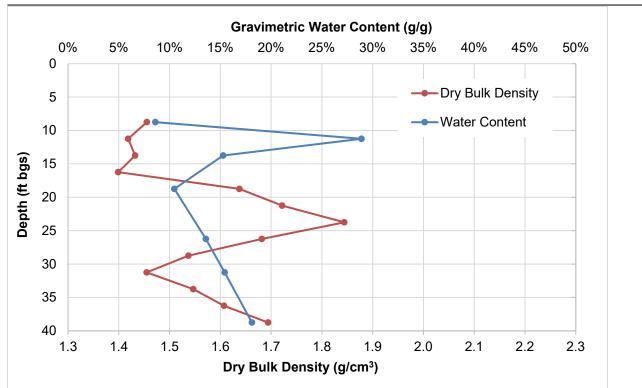


Figure 4. GM4 dry bulk density and water content

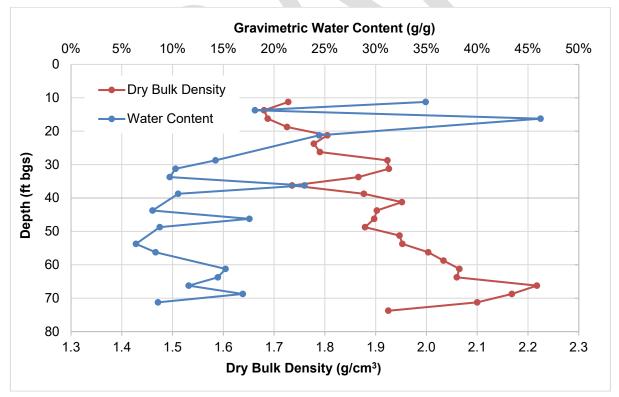


Figure 5. GM5 dry bulk density and water content

GeoSystems Analysis, Inc.

7 2310 - Subsurface Characterization of the Proposed Gates - Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City Borehole Sample Testing

8

Saturated Hydraulic Conductivity

Measured K_{sat}, field measured percent fines (silt plus clay) and sample packing bulk density and porosity are presented in Table 4. Measured K_{sat} of the GM1 and GM4 samples were 9.9 x 10^{-4} cm/s (2.81 ft/day) or greater whereas measured K_{sat} of the GM5 samples were 5.3 x 10^{-7} cm/s (0.0015 ft/day) or less. K_{sat} results correspond with field observations of percent fines, with K_{sat} values being less for the finer textured GM5 samples (percent fines of 20% or more). The percent fines of the GM1 and GM4 samples were 10% or less and corresponded to greater measured K_{sat}. The low K_{sat} values for the GM5 samples indicate that the deeper unsaturated zone sediments at GM5 may significantly limit percolation of infiltrated water at this location.

Sample ID	Field Dry Measured Bulk Percent Density		Total Porosity	Saturated Hydraulic Conductivity	
	Silt + Clay	(g/cm ³)	(cm³/cm³)	(cm/sec)	(ft/day)
GM-1, MW-1 7.5-10 ft	10	1.74	0.36	9.90E-04	2.81
GM-1, MW-1 15-17.5 ft	5	1.63	0.40	1.20E-02	34.02
GM-1, MW-1 22.5-25 ft	5	1.60	0.41	4.30E-03	12.19
GM-4, MW-1 15-17.5 ft	5	1.45	0.48	6.20E-03	17.57
GM-4, MW-1 17.5-20 ft	5	1.54	0.44	2.10E-03	5.95
GM-4, MW-1 22.5-25 ft	5	1.69	0.38	3.10E-03	8.79
GM-5, MW-1 10-12.5 ft	40	1.57	0.43	1.30E-07	0.0004
GM-5, MW-1 20-22.5 ft	20	1.67	0.39	5.30E-07	0.0015
GM-5, MW-1 50-52.5 ft	30	1.80	0.32	6.20E-08	0.0002

Table 4. Saturated hydraulic conductivity, packing bulk density and porosity, and field estimated percent silt and clay

CONCLUSIONS

GM5 K_{sat} results of 5.3 x 10-7 cm/s (0.0015 ft/day) or less indicate the finer textured sediments observed in the unsaturated zone at GM5 may limit deep percolation at this location. Additionally, the presence of multiple layers of finer textured material throughout the unsaturated zone at GM5 is supported by the variable elevated water contents at this borehole. Conversely, the measured K_{sat} values at GM1 and GM4 do not indicate potential restrictions to net percolation from deeper unsaturated sediments present at these locations.

REFERENCES

GSI, see GSI Water Solutions, Inc.

GeoSystems Analysis, Inc.

2310 – Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\Testing\DRAFT Gates-Mill City_Borehole Sample Testing

GSI Water Solutions, Inc., 2023. Gates/Mill City Deep Soil Characterization and Slug Testing Results, Marion and Linn Counties, Oregon. Technical Memorandum to Chris Einmo, Marion County, dated August XX, 2023

Appendix A. GSA Laboratory Test Results

Date:August 8, 2023Project Number:92310Project Name:GSI - Mill City Inflitration SiteJob Description:Lab TestingClient:GSI Water Solutions, Inc.Project Contact:Matt Kohlbecker, RGBilling Address:55 SW Yamhill St., Suite 300Portland, OR 97204

Test	Method	Qty
Specific Gravity of Soils	ASTM D854-14	3
Particle Size Analysis with Hydrometer	ASTM D6913-17 / ASTM C136-14 / ASTM D7928-17	6
Rigid-Wall Saturated Hydraulic Conductivity	ASTM D5856-15	9

Thank you for choosing GeoSystems Analysis for your material testing needs. We look forward to working with you again. If you have any questions or require additional information, please contact us at 1-520-628-9330

Sincerely,

Prepared By: Nate Blevens Laboratory Project Manager

Reviewed By: Mike Yao Laboratory Technical Director

Laboratory Test Results - Soil Particle Density

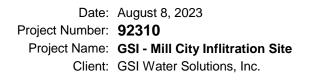
Date: August 8, 2023

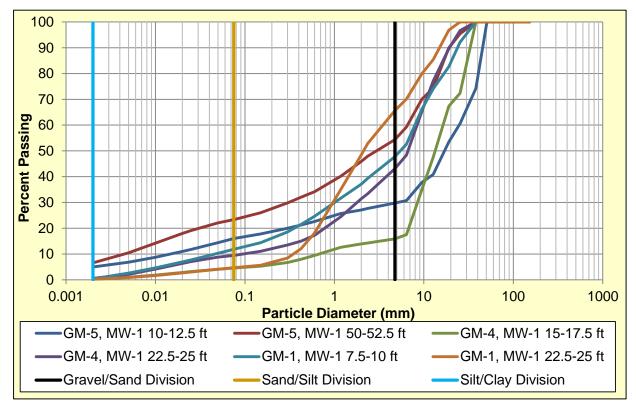
Project Number: 92310

Project Name: GSI - Mill City Inflitration Site

Client: GSI Water Solutions, Inc.

Sample ID	Particle Density (g/cm ³)
GM1 MW1 7.5-10	2.72
GM4 MW1 15-17.5	2.81
GM5 MW1 50-52.5	2.67


Laboratory Test Results - Particle Size Distribution


Date: August 8, 2023 Project Number: **92310** Project Name: **GSI - Mill City Inflitration Site** Client: GSI Water Solutions, Inc.

PSD								
		Sample ID						
Si	eve	GM-5, MW-1 10-12.5 ft	GM-5, MW-1 50-52.5 ft	GM-4, MW-1 15-17.5 ft	GM-4, MW-1 22.5-25 ft	GM-1, MW-1 7.5-10 ft	GM-1, MW-1 22.5-25 ft	
(mm)	US standard			Percent	Passing			
152	6"	100	100	100	100	100	100	
100	4"	100	100	100	100	100	100	
75	3"	100	100	100	100	100	100	
50.8	2"	100	100	100	100	100	100	
38.1	1.5"	74	100	100	100	100	100	
25.4	1"	61	95	72	97	92	100	
19.05	3/4"	53	90	67	90	83	97	
12.7	1/2"	41	74	47	77	74	85	
9.525	3/8"	38	70	35	65	66	80	
6.4	1/4"	31	59	17	48	53	70	
4.75	#4	30	54	16	43	48	66	
2.36	#8	28	48	14	33	39	53	
2	#10	27	46	14	31	37	48	
1.18	#16	26	40	13	24	32	35	
0.6	#30	23	34	9	17	25	18	
0.425	#40	21	32	8	15	21	12	
0.3	#50	20	30	7	14	19	8	
0.15	#100	18	26	5	11	14	6	
0.075	#200	16.0	23.3	4.6	9.4	11.8	4.7	
0.05		14.4	22.1	4.1	8.8	10.3	4.1	
0.025	Hydrometer	11.8	19.1	3.2	7.1	7.7	3.0	
0.02		11.0	18.0	2.9	6.4	6.9	2.7	
0.01		8.7	14.2	1.9	4.2	4.6	1.7	
0.005	НУ	6.8	10.5	1.0	2.1	2.6	0.9	
0.002		5.0	6.6	0.2	0.6	0.4	0.2	

Laboratory Test Results - Particle Size Distribution

Laboratory Test Results - Rigid-Wall Saturated Hydraulic Conductivity

Date: August 8, 2023 Project Number: **92310** Project Name: **GSI - Mill City Inflitration Site** Client: GSI Water Solutions, Inc.

Rigid-Wall Saturated Hydraulic Conductivity						
		Measured				
Sample ID	Dry Bulk Density (g/cm³)	Total Porosity (cm ³ /cm ³)	Saturated Hydraulic Conductivity (cm/sec)			
GM-1, MW-1 7.5-10 ft	1.74	0.36	9.9E-04			
GM-1, MW-1 15-17.5 ft*	1.63	0.40	1.2E-02			
GM-1, MW-1 22.5-25 ft*	1.60	0.41	4.3E-03			
GM-4, MW-1 15-17.5 ft	1.45	0.48	6.2E-03			
GM-4, MW-1 17.5-20 ft*	1.54	0.44	2.1E-03			
GM-4, MW-1 22.5-25 ft*	1.69	0.38	3.1E-03			
GM-5, MW-1 10-12.5 ft*	1.57	0.43	1.3E-07			
GM-5, MW-1 20-22.5 ft*	1.67	0.39	5.3E-07			
GM-5, MW-1 50-52.5 ft	1.80	0.32	6.2E-08			

*Using average particle density for porosity calculation (2.73 g/cm³)

Appendix B. OSU Laboratory Test Results

Oregon State University

Soil Health Laboratory

soil.lab@oregonstate.edu 541-737-2187 Crop and Soil Science Department 3079 Ag-Life Sciences Bldg Corvallis, OR 97331 Elemental Analysis Results

Name:	Jason Keller
Organization:	GeoSystems Analysis, Inc.
Contact for results:	jason@gsanalysis.com
Date submitted:	5/26/2023
Date delivered:	5/31/2023
Group number:	223308

Method:

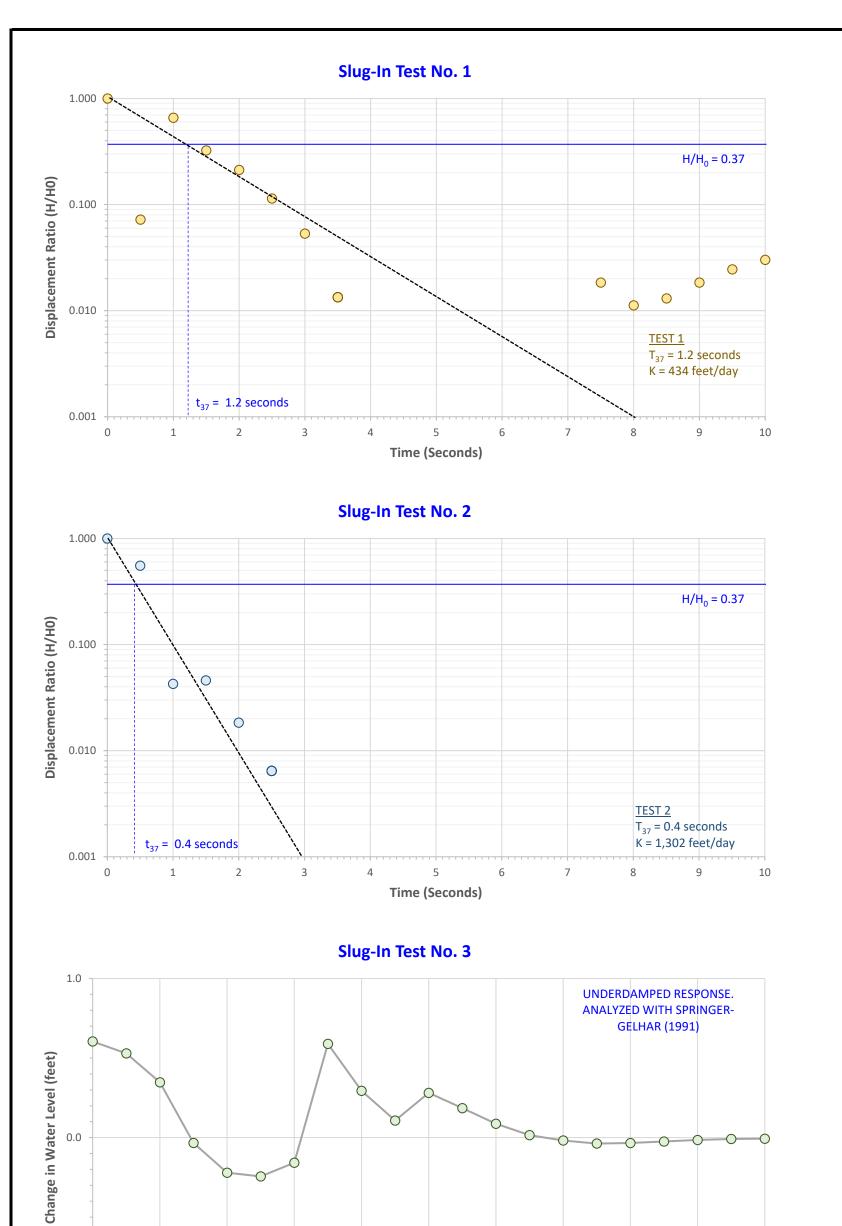
Moisture Gravimetric moisture as sample is received. All other data reported on a dry matter basis

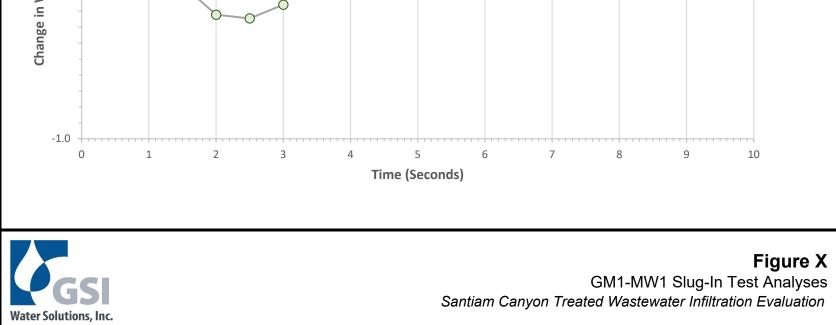
			_
Sample	ID	%	
Customer ID	Lab ID	Moisture	
GM5 10-12.5	1	34.9	
GM5 12.5-15	2	18.1	
GM5 15-17.5	3	46.2	
GM5 20-22	4	24.4	
GM5 27.5-30	5	14.2	
GM5 30-32.5	6	10.3	
GM5 32.5-35	7	9.7	
GM5 35-37.5	8	23.0	
GM5 37.5-40	9	10.6	
GM5 42.5-45	10	8.0	
GM5 45-47.5	11	17.6	
GM5 47.5-50	12	8.7	
GM5 52.5-55	13	6.4	
GM5 55-57.5	14	8.3	
GM5 60-62.5	15	15.2	
GM5 62.5-65	16	14.5	
GM5 65-67.5	17	11.6	
GM5 67.5-70	18	16.9	
GM5 70-72.5	19	8.6	
GM1 10-12.5	20	5.6	
GM1 12.5-15	21	8.9	
GM1 15-17.5	22	13.3	
GM1 17.5-20	23	10.6	
GM1 25-27.5	24	29.9	
GM1 30-32.5	25	15.2	
GM1 32.5-35	26	15.0	
GM1 35-35.5	27	15.7	
GM1 36-37.5	28	15.7	
GM1 37.5-40	29	11.9	
GM4 7.5-10	30	8.6	
GM4 10-12.5	31	28.9	
GM4 12.5-15	32	15.3	
GM4 17.5-20	33	10.5	
GM4 22.5-25	34	14.7	
GM4 25-27.5	35	13.6	
GM4 27.5-30	36	10.4	
GM4 30-32.5	37	15.4	
GM4 37.5-40	38	18.1	
	1		l

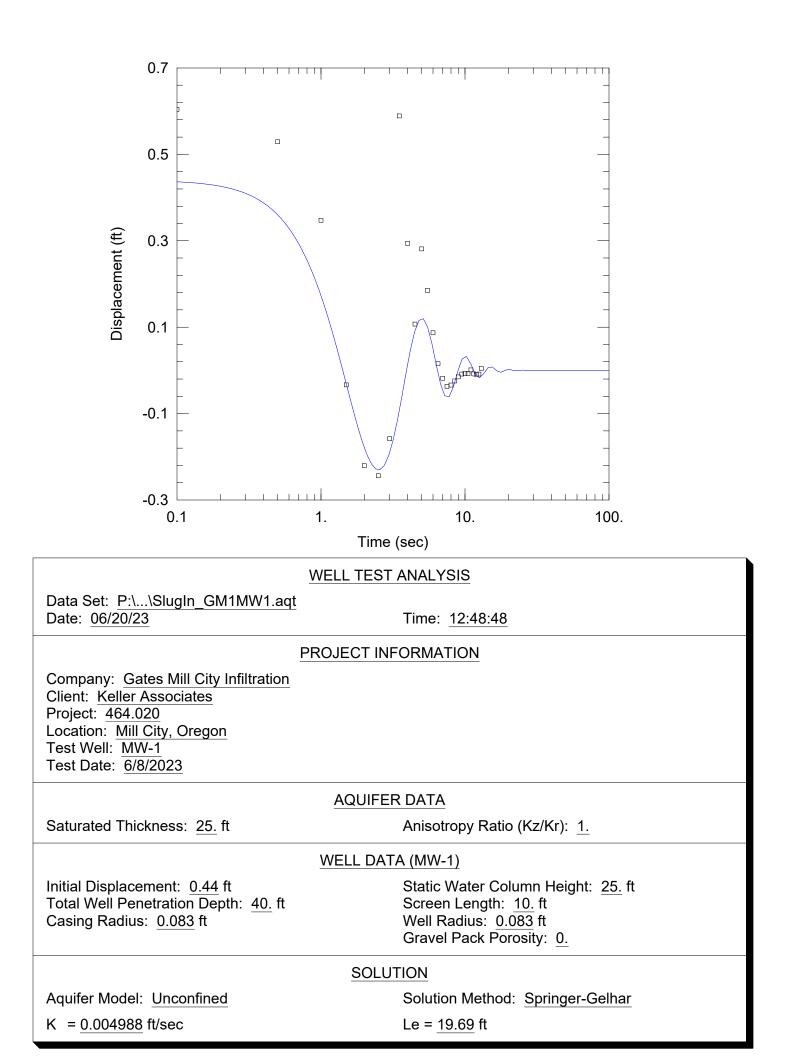
Sample ID	Sample ID		g	g	%
Customer ID	Lab ID	Tin) (/ cinht	Weight Before 105	Weight After	Gravimetric
Customer ID	Lab ID	Tin Weight	С	105 C	moisture
GM5 10-12.5	1	12.6	584.4	436.4	34.9
GM5 12.5-15	2	12.5	720.0	611.5	18.1
GM5 15-17.5	3	12.4	463.1	320.6	46.2
GM5 20-22	4	12.5	444.4	359.6	24.4
GM5 27.5-30	5	12.5	506.1	444.6	14.2
GM5 30-32.5	6	12.4	298.3	271.6	10.3
GM5 32.5-35	7	12.5	370.1	338.4	9.7
GM5 35-37.5	8	12.5	470.5	384.9	23.0
GM5 37.5-40	9	12.4	428.3	388.6	10.6
GM5 42.5-45	10	12.3	432.0	400.8	8.0
GM5 45-47.5	11	12.7	513.2	438.4	17.6
GM5 47.5-50	12	13.3	409.0	377.2	8.7
GM5 52.5-55	13	12.9	446.9	420.8	6.4
GM5 55-57.5	14	12.4	380.4	352.1	8.3
GM5 60-62.5	15	12.4	447.9	390.4	15.2
GM5 62.5-65	16	12.5	685.3	600.3	14.5
GM5 65-67.5	17	12.7	629.8	565.7	11.6
GM5 67.5-70	18	12.7	584.3	501.6	16.9
GM5 70-72.5	19	12.7	509.6	470.4	8.6
GM1 10-12.5	20	12.4	465.2	441.3	5.6
GM1 12.5-15	21	12.5	311.5	287.0	8.9
GM1 15-17.5	22	12.4	543.4	481.2	13.3
GM1 17.5-20	23	12.4	390.4	354.3	10.6
GM1 25-27.5	24	12.6	540.2	418.9	29.9
GM1 30-32.5	25	12.5	439.8	383.3	15.2
GM1 32.5-35	26	12.4	557.9	486.9	15.0
GM1 35-35.5	27	12.4	363.0	315.3	15.7
GM1 36-37.5	28	12.5	574.1	498.1	15.7
GM1 37.5-40	29	12.4	358.1	321.4	11.9
GM4 7.5-10	30	12.4	442.9	408.8	8.6
GM4 10-12.5	31	12.5	451.4	353.0	28.9
GM4 12.5-15	32	12.4	521.0	453.6	15.3
GM4 17.5-20	33	12.3	338.3	307.4	10.5
GM4 22.5-25	34	12.4	436.0	381.6	14.7
GM4 25-27.5	35	12.4	642.3	567.0	13.6
GM4 27.5-30	36	12.4	429.6	390.3	10.4
GM4 30-32.5	37	12.5	511.6	444.9	15.4
GM4 37.5-40	38	12.4	477.4	406.1	18.1

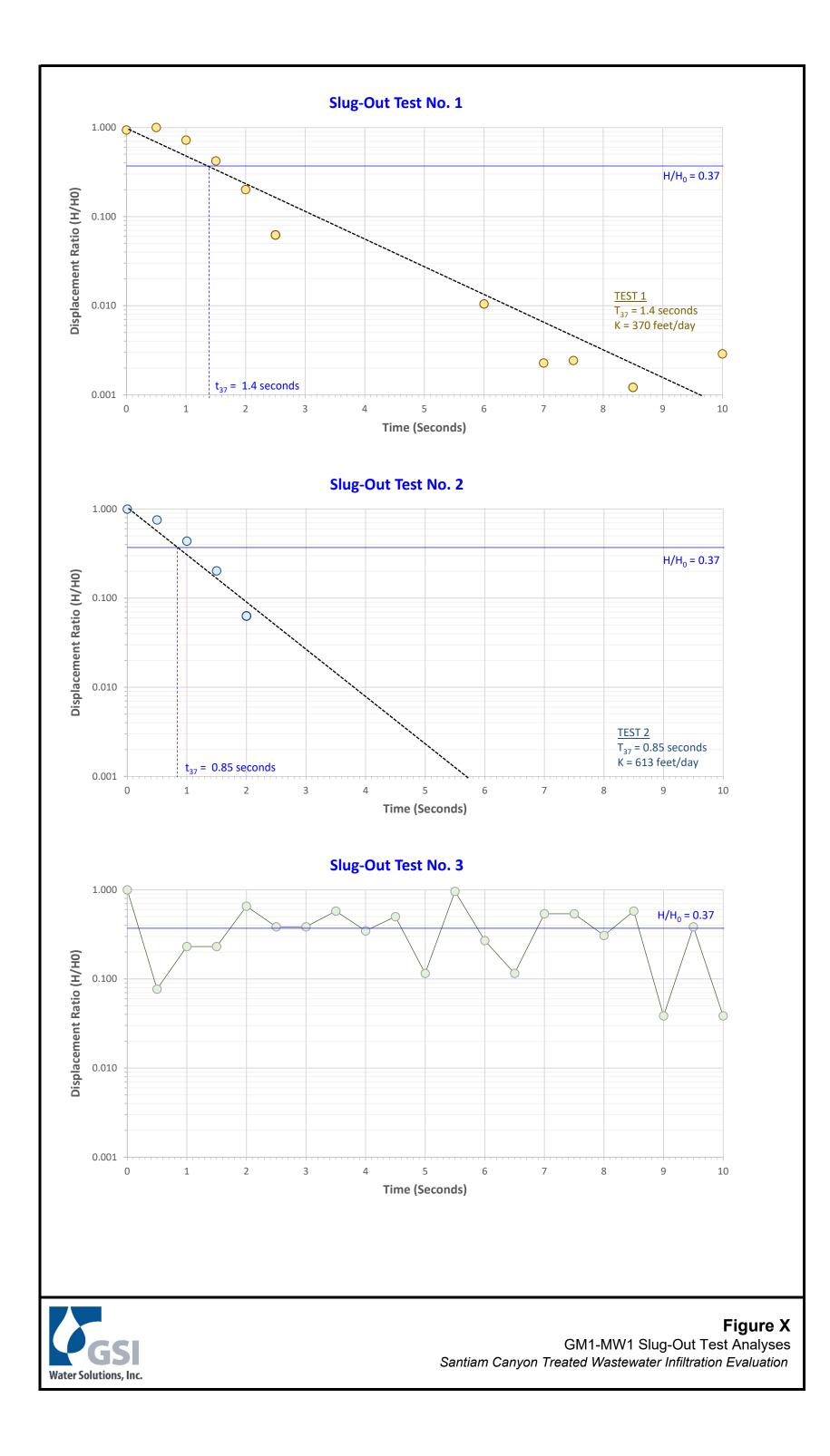
-ATTACHMENT C-----

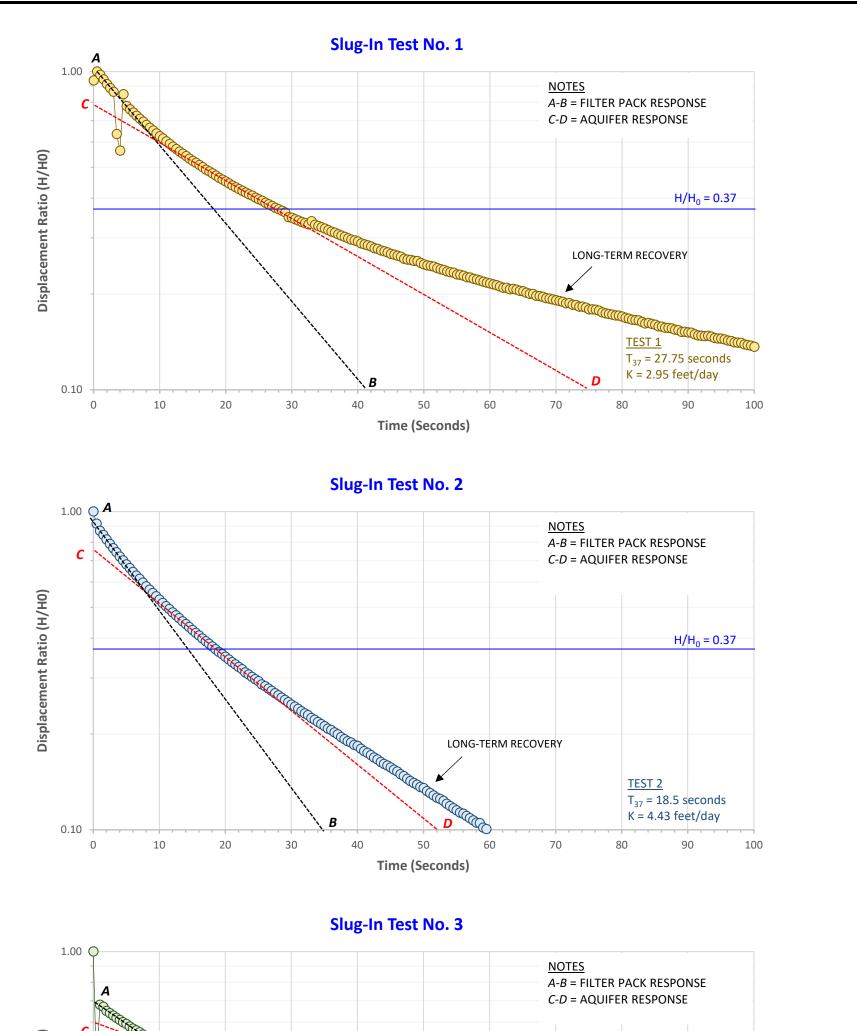
Slug Test Results

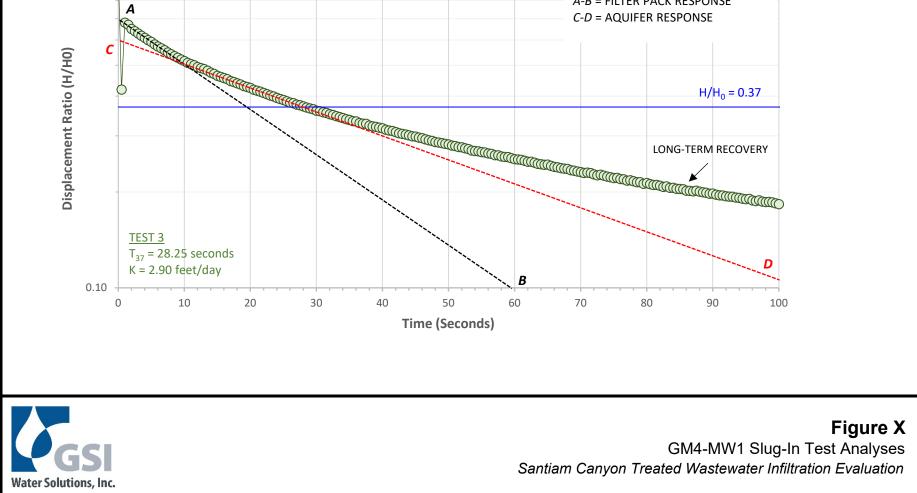

Slug Test Results at GM1 Santiam Canyon Treated Wastewater Infiltration Evaluation

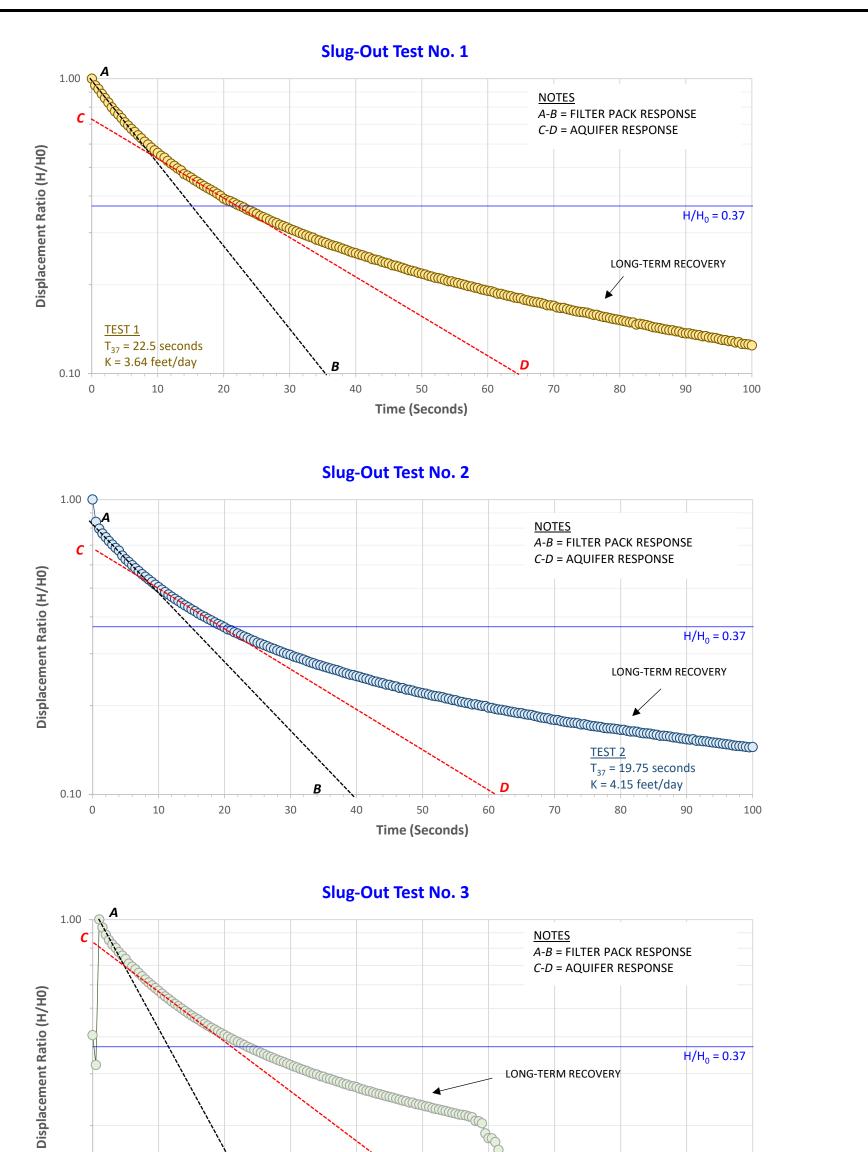

	t ₃₇ (seconds)	K (feet/day)	Notes
Slug In 1	1.2	434	Hvorslev Method
Slug In 2	0.4	1,302	Hvorslev Method
Slug In 3		431	Underdamped response. Analyzed with Springer-Gelhar (1991)
Slug Out 1	1.4	370	Hvorslev Method
Slug Out 2	0.85	613.00	Hvorslev Method
Slug Out 3			Data too noisy for analysis
•	Geomean	560.3	

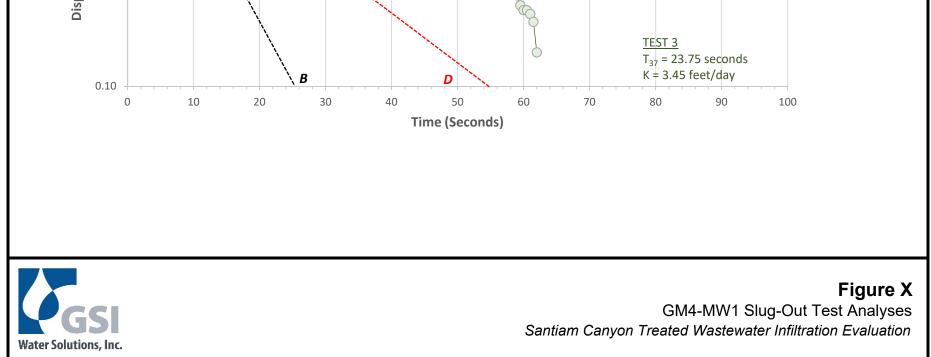

<u>Note:</u>


Site GM1 is characterized by high hydraulic conductivity. Recommend conservatively using the lowest measured value of 370 for MOUNDSOLV analyses for initial basin sizing. Need to recommend a pumping test to dial in final basin design.

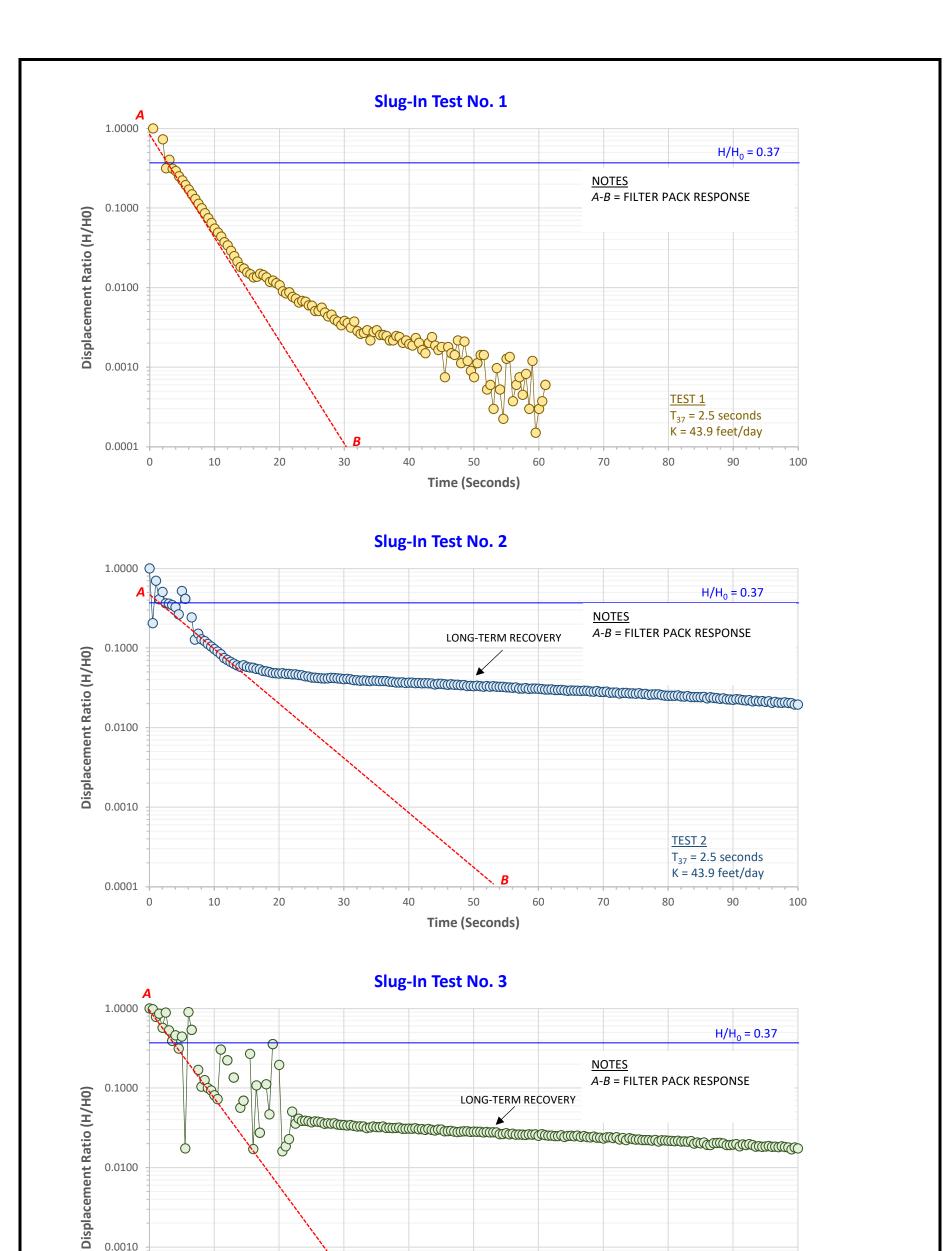


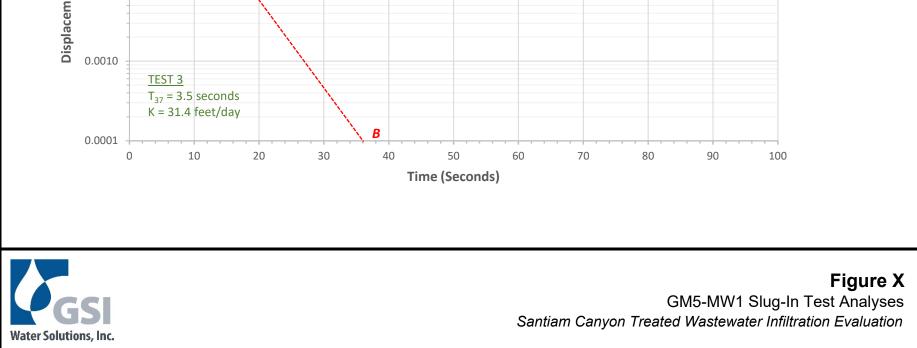


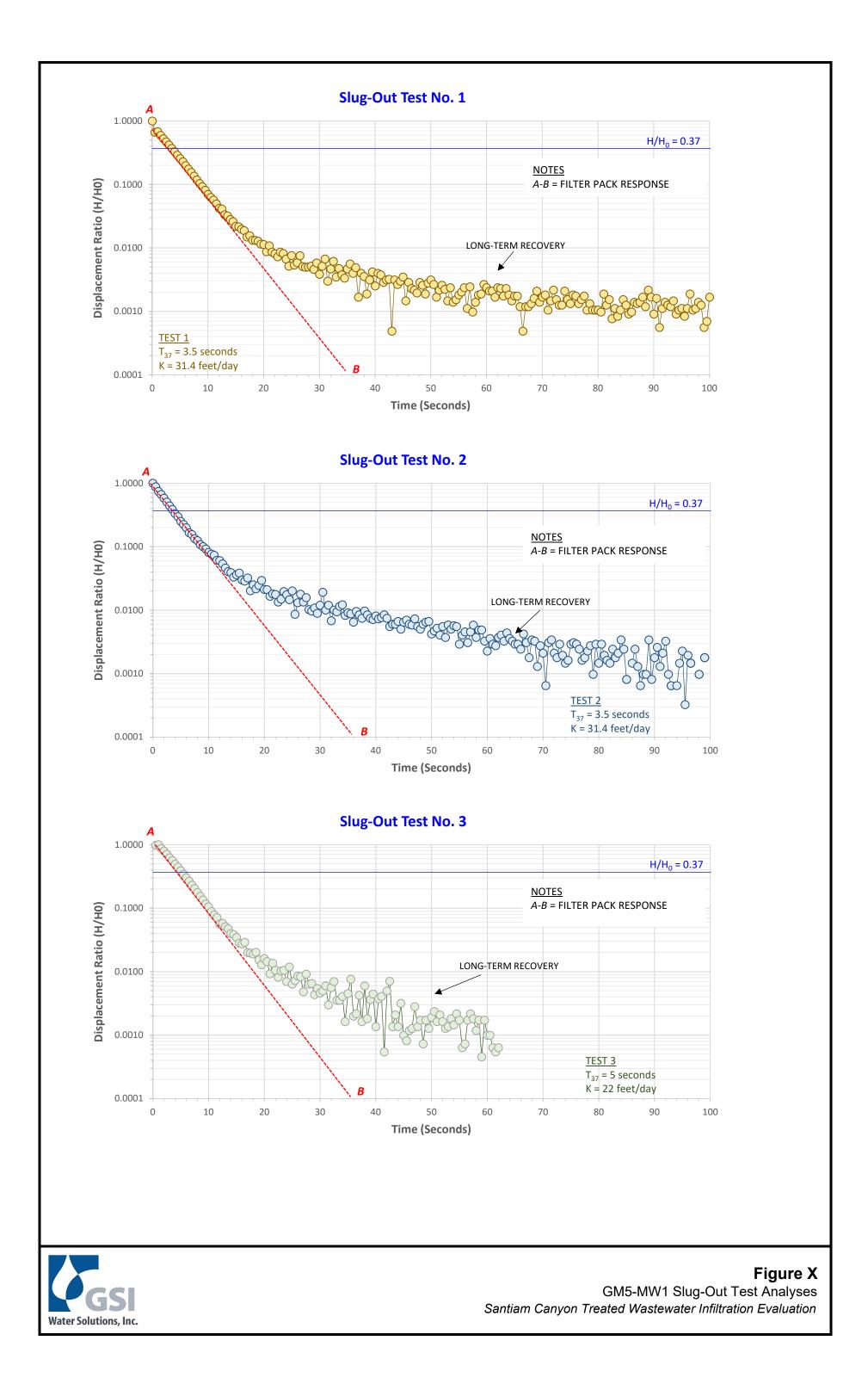



Slug Test Results at GM4 Santiam Canyon Treated Wastewater Infiltration Evaluation

	t₃₇ (seconds)	K (feet/day)	Notes
MW-1, Slug In 1	27.75	2.95	Hvorslev Method
MW-1, Slug In 2	18.50	4.43	Hvorslev Method
MW-1, Slug In 3	28.25	2.90	Hvorslev Method
MW-1, Slug Out 1	22.50	3.64	Hvorslev Method
MW-1, Slug Out 2	19.75	4.15	Hvorslev Method
MW-1, Slug Out 3	23.75	3.45	Hvorslev Method. Value of t ₃₇ may reflect effects from late-term recovery, but effects are not likely to be significant because the hydraulic conductivity from Slug Out 3 is similar to the hydraulic conductivity from the other slug tests.
	Geomean	3.54	







Slug Test Results at GM5 Santiam Canyon Treated Wastewater Infiltration Evaluation

	t₃₇ (seconds)	K (feet/day)	Notes
MW-1, Slug In 1	2.5	43.9	Hvorslev Method
MW-1, Slug In 2	2.5	43.9	Hvorslev Method
MW-1, Slug In 3	3.5	31.4	Hvorslev Method
MW-1, Slug Out 1	3.5	31.4	Hvorslev Method
MW-1, Slug Out 2	3.5	31.4	Hvorslev Method
MW-1, Slug Out 3	5.0	22.0	Hvorslev Method
	Geomean	33.07	

-ATTACHMENT D-

Groundwater SDWA Analysis and Wastewater Influent Testing Laboratory Results

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300 Portland, OR 97204						
	System Name:						
	System ID Number:						
	Source Number:						
	Multiple Sources:						
	Sample Type:						
	Sample Purpose:	Investigative or Other					
	Sample Location:	GM1MW1					
	County:						

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

								Lab mana		
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	6.15 H5	pH Units			klp	4072	a SM4500-H+ B	06/08/23 15:58	Temp (C) : 22.1
1067	ALKALINITY	42.5	mg CaCO3/	2		klp	4072	a SM2320 B	06/08/23	
1910	CORROSIVITY	-2.92	SI			bj	4072	a SM203	06/23/23	
	CARBONATE	ND	mqCaCO3/L	2		klp	4072	a SM2320 B	06/08/23	
	BICARBONATE	42.5	mg CaCO3/			klp		SM2320 B		
			l u			.			06/08/23	
	HYDROXIDE	ND	mg CaCO3/			klp		a SM2320 B	06/08/23	
1067	ALKALINITY	42.5	mg CaCO3/	2.0		klp	4072	a SM2320 B	06/08/23	
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb	4072	D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	78	mg/L	10	500	mso		SM2540 C	06/13/23	
1020	CHROMIUM	ND	mg/L	0.001	500	tjb		200.8	06/02/23	
1020	BERYLLIUM	ND		0.0003		tjb		200.8		
		ND H3	mg/L			-			06/02/23	
1041	NITRITE-N		mg/L	0.01	1.0	anl		SM4500-NO3 F	05/30/23 16:41	
1005	ARSENIC	ND	mg/L	0.0005		tjb		200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 a	200.8	06/02/23	
1015	CADMIUM	ND	mg/L	0.00025		tjb	4072 a	200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1040	NITRATE-N	1.10 H3	mg/L	0.005	10	anl	OR100063	SM4500-NO3 F	05/30/23 16:41	
1010	BARIUM	0.0035	mg/L	0.001		tjb	4072	200.8	06/02/23	
1030	LEAD	0.00027 J	mg/L	0.0005		tjb	4072	200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072 a	245.1	06/13/23	
	HARDNESS	39.4	mg CaCO3/	10		bj	4072 ;	a 200.7	06/05/23	
NOTER										

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300 Portland, OR 97204						
System Name:						
System ID Number:						
Source Number:						
Multiple Sources:						
Sample Type:						
Sample Purpose:	Investigative or Other					
Sample Location: County:	GM1MW1					
	55 SW Yamhill St Portland, OR 972 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Sample Location:					

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

								Lab mana	j -,	1
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	30.0	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	11.5 NN	mg/L	2		рар	OR100063 c	I-3765-85	06/01/23	
1032	MANGANESE	0.0776	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	0.62	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	0.52	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.00086 J	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0020	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0033	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/01/23	
1016	CALCIUM	10.5	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	3.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	3.2	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	2.6	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	1.4	mg/L	0.2		jwn	4072 a	300.0	06/01/23	
	MOLYBDENUM	0.00062	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	1.6	mg/L	0.2		jwn	4072 a	300.0	06/01/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by
										PacePA
NOTES:										<u>i</u>

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300 Portland, OR 97204

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM1MW1 County:

Reference Number: 23-15512 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM1MW10523 Lab Number: 23 31092 Date Collected: 5/28/23 11:20 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

						1				
EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/09/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/09/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/09/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/09/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/14/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	06/20/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/09/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/09/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM1-MW1 County: Sampled By: Jesse Hall Sampler Phone:

Reference Number: 23-22395 Project: Santiam Canyon Infiltration Eval

Field ID: GM1 Lab Number: 23 44385 Date Collected: 7/25/23 11:00 Date Extracted: 524_230728 Date Analyzed: 07/28/23 Report Date: 8/4/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Into the parameter was not detected above the Lower reporting Limit (LTC).
* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.
An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.
These test results meet all the requirements of NELAP, unless otherwise stated in writing, and relate only to these samples. Estimates of uncertainty are not included in this report. If this information is required to the parameter was block of the same the data in the same like data. required please contact us at the phone number listed in the report header

If you have any questions concerning this report contact our office at the above phone number. FORM: cVOC OR.rpt

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM4MW1 County:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM4MW10523 Lab Number: 23_31097 Collect Date: 5/29/23 14:55 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Thanlph

Thanh B Phan Lab Manager, Portland

								Lab Maria		
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	7.15 H5	pH Units			klp	4072 a	a SM4500-H+ B	06/08/23 16:01	Temp (C) : 22.0
1067	ALKALINITY	114	mg CaCO3/	5		klp	4072	a SM2320 B	06/08/23	
1910	CORROSIVITY	-1.25	SI			bj	4072 a	a SM203	06/23/23	
	CARBONATE	ND	mqCaCO3/L	5		klp	4072	a SM2320 B	06/08/23	
	BICARBONATE	114	mg CaCO3/			klp		a SM2320 B	06/08/23	
	HYDROXIDE	ND	mg CaCO3/			klp		a SM2320 B	06/08/23	
1067	ALKALINITY	114	mg CaCO3/			klp		a SM2320 B	06/08/23	
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb	4072	a D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	147	mg/L	10	500	mso	046	a SM2540 C	06/13/23	
1020	CHROMIUM	0.0019	mg/L	0.001		tjb	4072	a 200.8	06/02/23	
1075	BERYLLIUM	ND	mg/L	0.0003		tjb	4072	200.8	06/02/23	
1041	NITRITE-N	ND	mg/L	0.01	1.0	anl	OR100063	SM4500-NO3 F	05/30/23 16:48	
1005	ARSENIC	0.0017	mg/L	0.0005		tjb	4072 a	a 200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 a	a 200.8	06/02/23	
1015	CADMIUM	0.00019 J	mg/L	0.00025		tjb	4072 a	a 200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1040	NITRATE-N	0.02	mg/L	0.005	10	anl	OR100063	sM4500-NO3 F	05/30/23 16:48	
1010	BARIUM	0.0211	mg/L	0.001		tjb	4072	a 200.8	06/02/23	
1030	LEAD	0.00087	mg/L	0.0005		tjb	4072 a	a 200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072 a	a 245.1	06/13/23	
	HARDNESS	99.6	mg CaCO3/	10		bj	4072	a 200.7	06/05/23	
							-012 0	200.1	00/03/23	
NOTEO										

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232						
	System Name:						
	System ID Number:						
	Source Number:						
	Multiple Sources:						
	Sample Type:						
	Sample Purpose:	Investigative or Other					
	Sample Location:	GM4MW1					
	County:						

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM4MW10523 Lab Number: 23_31097 Collect Date: 5/29/23 14:55 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

			1	1						-
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	58.2	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	84 NN	mg/L	2		рар		I-3765-85	06/01/23	
1032	MANGANESE	0.449	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	3.63	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	3.80	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.0043	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0367	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0087	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/07/23	
1016	CALCIUM	18.6	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	9.4	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	12.9	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	1.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	2.1	mg/L	0.2		jwn	4072 a	300.0	06/07/23	
	MOLYBDENUM	0.00078 J	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	0.9	mg/L	0.4		jwn	4072 a	300.0	06/07/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by PacePA
NOTES										

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM4MW1 County:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM4MW10523 Lab Number: 23 31097 Date Collected: 5/29/23 14:55 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

			1			1				
EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/09/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/09/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/09/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/09/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/05/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	07/03/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/09/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/09/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> **ORELAP 4072** Idaho WA00097

> > Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM4MW1 County: Sampled By: Mellisa Girbach Sampler Phone:

Reference Number: 23-15516 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM4MW10523 Lab Number: 23_31097 Date Collected: 5/29/23 14:55 Date Extracted: 524_230605 Date Analyzed: 06/05/23 Report Date: 7/12/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232						
	System Name:						
	System ID Number:						
	Source Number:						
	Multiple Sources:						
	Sample Type:						
	Sample Purpose:	Investigative or Other					
	Sample Location:	GM5MW1					
	County:						

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM5MW10523 Lab Number: 23_31106 Collect Date: 5/30/23 13:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

								Eabimana	ger, i ortiari	u
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	CORROSIVITY									
1925	HYDROGEN ION (pH)	7.06 H5	pH Units			klp	4072 ;	a SM4500-H+ B	06/08/23 16:04	Temp (C) : 22.7
1067	ALKALINITY	41.4	mg CaCO3/	2		klp	4072 ;	a SM2320 B	06/08/23	
1910	CORROSIVITY	-2.08	SI			bj	4072 ;	a SM203	06/23/23	
	CARBONATE	ND	mgCaCO3/L	2		klp	4072	a SM2320 B	06/08/23	
	BICARBONATE	41.4	mg CaCO3/			klp	-	a SM2320 B		
		ND	-						06/08/23	
	HYDROXIDE		mg CaCO3/			klp		a SM2320 B	06/08/23	
1067	ALKALINITY	41.4	mg CaCO3/	2.0		klp	4072 a	a SM2320 B	06/08/23	
4004				0.005						
1024	CYANIDE	ND	mg/L	0.005	0.2	tjb		D7511-12	06/07/23	
	TOTAL DISSOLVED SOLIDS	84	mg/L	10	500	mso		a SM2540 C	06/13/23	
1020	CHROMIUM	0.0032	mg/L	0.001		tjb		a 200.8	06/02/23	
1075	BERYLLIUM	ND	mg/L	0.0003		tjb	4072 a	a 200.8	06/02/23	
1041	NITRITE-N	ND	mg/L	0.01	1.0	anl	OR100063	sM4500-NO3 F	05/30/23 16:49	
1005	ARSENIC	0.00095	mg/L	0.0005		tjb	4072 a	a 200.8	06/02/23	
1045	SELENIUM	ND	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1050	SILVER	ND	mg/L	0.0002		tjb	4072 ;	200.8	06/02/23	
1015	CADMIUM	ND	mg/L	0.00025		tjb	4072 a	200.8	06/02/23	
1074	ANTIMONY	ND	mg/L	0.001		tjb	4072 a	200.8	06/02/23	
1040	NITRATE-N	0.46	mg/L	0.005	10	anl	OR100063	SM4500-NO3 F	05/30/23 16:49	
1010	BARIUM	0.0120	mg/L	0.001		tjb	4072 a	a 200.8	06/02/23	
1030	LEAD	0.00060	mg/L	0.0005		tjb	4072 -	a 200.8	06/20/23	
1035	MERCURY	ND	mg/L	0.0002		tjb	4072 a	245.1	06/13/23	
	HARDNESS	36.3	mg CaCO3/	10		bj	4072 a	a 200.7	06/05/23	

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	GSI Water Solutio 650 NE Holladay Portland, OR 972	Street Ste 900
	System Name:	
	System ID Number:	
	Source Number:	
	Multiple Sources:	
	Sample Type:	
	Sample Purpose:	Investigative or Other
	Sample Location:	GM5MW1
	County:	

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 - (Sample Number: GM5MW10523 Lab Number: 23_31106 Collect Date: 5/30/23 13:20 Date Received: 5/30/23 Report Date: 7/12/23 Sampled By: Mellisa Girbach Sampler Phone: Approved by: anp,bj,mcs,pap,pdk,t Authorized by:

Chanlph

Thanh B Phan Lab Manager, Portland

										<u> </u>
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	43.3	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	71 NN	mg/L	4		рар		I-3765-85	06/01/23	
1032	MANGANESE	0.106	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	2.61	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	2.26	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.0028	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0142	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0059	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/02/23	
1016	CALCIUM	9.1	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	4.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	3.3	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	1.0	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	1.4	mg/L	0.2		jwn	4072 a	300.0	06/02/23	
	MOLYBDENUM	ND	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	0.3	mg/L	0.2		jwn	4072 a	300.0	06/02/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by PacePA
NOTES										

NOTES: ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL). MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. * Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Burlington, WA Corporate Laboratory (a) 1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 * 360.757.1400 Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Composition: Sample Location: GM5MW1 County:

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM5MW10523 Lab Number: 23 31106 Date Collected: 5/30/23 13:20 Sampled By: Mellisa Girbach Sampler Phone: Report Date: 7/12/23 Approved By: nml,pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

								Lac	i Manager, P	
EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	METHOD	Analyst	Lab	Analyzed	COMMENT
	Synthetic Organic Chemicals									
2105	2,4 - D	ND	mg/L	0.0001	0.070	515.4	BFR	4072	06/13/23	
2110	2,4,5 - TP (SILVEX)	ND	mg/L	0.0001	0.050	515.4	BFR	4072	06/13/23	
2035	DI(2-ETHYLHEXYL)-ADIPATE	ND	mg/L	0.00005	0.400	525.2	MA	4072	06/30/23	
2051	ALACHLOR	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2050	ATRAZINE	ND	mg/L	0.00005	0.003	525.2	MA	4072	06/30/23	
2306	BENZO(A)PYRENE	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2010	LINDANE (BHC - GAMMA)	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2046	CARBOFURAN	ND	mg/L	0.001	0.040	531.2	MA	4072	06/21/23	
2959	CHLORDANE	ND	mg/L	0.0001	0.002	508.1	MA	4072	06/22/23	
2031	DALAPON	ND	mg/L	0.0005	0.200	515.4	BFR	4072	06/13/23	
2931	1,2-DIBROMO-3-CHLOROPROPANE	ND	mg/L	0.00002	0.0002	504.1	MA	4072	06/07/23	
2041	DINOSEB	ND	mg/L	0.0001	0.007	515.4	BFR	4072	06/13/23	
2032	DIQUAT	ND	mg/L	0.0004	0.020	549.2	KRC	4072	06/07/23	
2033	ENDOTHALL	ND	mg/L	0.005	0.100	548.1	MA	4072	06/05/23	
2005	ENDRIN	ND	mg/L	0.00005	0.002	525.2	MA	4072	06/30/23	
2946	1,2 - DIBROMOETHANE (EDB)	ND	mg/L	0.00002	0.00005	504.1	MA	4072	06/07/23	
2034	GLYPHOSATE	ND	mg/L	0.005	0.700	547	MA	4072	07/03/23	
2067	HEPTACHLOR EPOXIDE "B"	ND	mg/L	0.00005	0.0002	525.2	MA	4072	06/30/23	
2065	HEPTACHLOR	ND	mg/L	0.00005	0.0004	525.2	MA	4072	06/30/23	
2274	HEXACHLOROBENZENE	ND	mg/L	0.00005	0.001	525.2	MA	4072	06/30/23	
2042	HEXACHLOROCYCLO-PENTADIENE	ND	mg/L	0.00005	0.050	525.2	MA	4072	06/30/23	
2015	METHOXYCHLOR	ND	mg/L	0.00005	0.040	525.2	MA	4072	06/30/23	
2326	PENTACHLOROPHENOL	ND	mg/L	0.00004	0.001	515.4	BFR	4072	06/13/23	
2039	DI(2-ETHYLHEXYL)-PHTHALATE	ND	mg/L	0.0001	0.006	525.2	MA	4072	06/30/23	
2040	PICLORAM	ND	mg/L	0.0001	0.500	515.4	BFR	4072	06/13/23	
2037	SIMAZINE	ND	mg/L	0.00005	0.004	525.2	MA	4072	06/30/23	
2020	TOXAPHENE	ND	mg/L	0.001	0.003	508.1	MA	4072	06/22/23	
2036	OXAMYL (VYDATE)	ND	mg/L	0.001	0.200	531.2	MA	4072	06/21/23	
2383	PCBS (Total Aroclors)	ND	mg/L	0.0002	0.0005	508.1	MA	4072	06/22/23	

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

> **ORELAP 4072** Idaho WA00097

> > Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc. 650 NE Holladay Street Ste 900 Portland, OR 97232

> System Name: System ID Number: DWP Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: GM5MW1 County: Sampled By: Mellisa Girbach Sampler Phone:

Reference Number: 23-15521 Project: Santiam Canyon 0464.020.001 ·

Field ID: GM5MW10523 Lab Number: 23_31106 Date Collected: 5/30/23 13:20 Date Extracted: 524_230605 Date Analyzed: 06/05/23 Report Date: 7/12/23 Analyst: NML Approved By: pdm

Authorized By:

hanlph

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	
2964	METHYLENE CHLORIDE (Dichlorometha	ND	mg/L	0.0005	0.005	524.2	4072 a	
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	
2955	TOTAL XYLENES	ND	mg/L	0.0005	10.0	524.2	4072 a	
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	

NOTES: If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed

TERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/09/2023

CITMILC

Lab Receipt Information

05/02/2023 1045 SW

PO#:

Collection Information

Date:	05/02	2/2023	
Time:	0900	<u>E</u>	
By:	Russ	i	
Lab #:		20230502-095	
Locatio	on:	360 Remine Rd Mill City	INF

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

				EPA	Analys	sis
Analyte	Method	Acc* Results	Qual MRL	Units Limit	Date Time	Tech
Alkalinity, Total - 1927	SM2320 B	279.	10.	mg/l CaCO3	05/04/2023	AS
Bicarbonate Alkalinity	SM2320B	340.4	10	HC03	05/04/2023	AS
Hardness as CaCO3	SM2340C	86.	10.	mg/l CaCO3 250	05/04/2023	AS

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

K

ERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-096

 Location:
 360 Remine Rd Mill City Inf

05/22/2023

CITMILC

Lab Receipt Information 05/02/2023 1045 SW

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Ana	lysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	Fech
Inorganic Chemicals									
Antimony	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Arsenic	SM3113B		ND		0.002	mg/l	05/08/2023		bem
Barium	SM3113B	в	0.0109		0.0005	mg/l	05/12/2023	1515	cbb
Beryllium	SM3113B		ND		0.001	mg/l	06/05/2023		bem
Cadmium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Chromium	SM3113B		ND		0.02	mg/l	05/09/2023		bem
Fluoride	EPA300.0		7.41		0.2	mg/l	05/02/2023		bem
Lead	SM3113 B		ND		0.001	mg/l	05/15/2023		bem
Mercury	SM3112B		ND		0.001	mg/l	05/17/2023		bem

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Page 1 of 2

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Page: 2

LAB #: 20230502-096

096 (Cont)

CITMILC

							Analy	sis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Nickel	SM3113B		ND		0.05	mg/l	05/09/2023		bem
Nitrogen, Nitrate	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Nitrogen, Nitrite	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Selenium	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Sodium	SM3111B		50.2		1.0	mg/l	05/09/2023		as
Thallium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Aluminum	SM3113B		0.275		0.050	mg/l	05/30/2023		bem
Copper	SM3113 B		ND		0.002	mg/l	05/31/2023		bem
Iron	SM3111B		0.286		0.1	mg/l	05/31/2023		as
Manganese	SM3111B		ND		0.05	mg/l	05/31/2023		as
Silver	SM3113B		ND		0.01	mg/l	05/22/2023		bem
Zinc	SM3111 B		0.0547		0.01	mg/l	05/31/2023		bem

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Page 2 of 2

ANALYTICAL SUMMARY REPORT

June 09, 2023

Waterlab Corp 2603 12th St SE Salem, OR 97302-2154

Work Order: C23050297

Project Name: Mill City WWTP

Energy Laboratories, Inc. Casper WY received the following 1 sample for Waterlab Corp on 5/8/2023 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C23050297-001	20230502-094 Mill City WWTP	05/02/23 8:30	05/08/23	Waste Water	Metals by ICP/ICPMS, Drinking Water Metals Preparation by EPA 200.2 Gross Alpha, Gross Beta, Total Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager .

Report Approved By:

Cishley Wilson Ashley L. Wilson Project Managar Digitally signed by Ashley L. Wilson Date: 2023.06.09 14:46:22 -06:00

	Trust our People: Trust our Data:	Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711
CLIENT:	Waterlab Corp	
Project:	Mill City WWTP	Report Date: 06/09/23
Work Order:	C23050297	CASE NARRATIVE
ENEROX(LARO		

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Please verify ELI's certification coverage by visiting www.energylab.com.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Waterlab CorpProject:Mill City WWTPLab ID:C23050297-001Client Sample ID:20230502-094 Mill City WWTP

 Report Date:
 06/09/23

 Collection Date:
 05/02/23 08:30

 DateReceived:
 05/08/23

 Matrix:
 Waste Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analyzia Data (Ry
		•••••	Quanters		GOL	Meulou	Analysis Date / By
RADIONUCLIDES - TOTAL							
Uranium	ND	mg/L		0.0003	0.03	E200.8	05/17/23 04:23 / eli-b
Uranium, Activity		pCi/L		0.2	0,00	E200.8	05/17/23 04:23 / eli-b
RADIONUCLIDES, TOTAL		-					
Gross Alpha	-5	pCi/L	U			E900.0	05/27/23 02:30 / haw
Gross Alpha precision (±)		•	-			E900.0	05/27/23 02:30 / haw
Gross Alpha MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Gross Beta		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta precision (±)		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Radium 226	-0.05	•	U			E903.0	05/23/23 11:12 / kdk
Radium 226 precision (±)		pCi/L	-			E903.0	05/23/23 11:12 / kdk
Radium 226 MDC		pCi/L				E903.0	05/23/23 11:12 / kdk
Radium 228		, pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 precision (±)		pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 MDC		pCi/L				RA-05	05/18/23 13:08 / trs
adium 226 + Radium 228		pCi/L				A7500-RA	05/24/23 12:54 / dmf
adium 226 + Radium 228 precision (±)		pCi/L				A7500-RA	05/24/23 12:54 / dmf
Radium 226 + Radium 228 MDC		pCi/L				A7500-RA	05/24/23 12:54 / dmf

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Waterlab Corp				Work Order:	C2305	50297	Repo	rt Date	: 05/17/23	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_230515A
Lab ID:	QCS	Ini	tial Calibratio	on Verifica	tion Standard					05/17	/23 02:09
Uranium			0.0476	mg/L	0.00030	95	90	110			
Lab ID:	ccv	Co	ontinuing Cal	ibration Ve	rification Standar	d				05/17	/23 03:40
Uranium			0.0476	mg/L	0.00030	95	90	110			
Method:	E200.8									Batc	h: 178689
Lab ID:	MB-178689	2 Me	ethod Blank				Run: ICPMS	S207-B_230515	A	05/17	23 02:58
Uranium			0.00003	mg/L	0.00002						
Uranium,	, Activity		0.02	pCi/L	0.01						
Lab ID:	LCS4-178689	La	boratory Cor	ntrol Samp	le		Run: ICPMS	S207-B_230515	A	05/17/	23 03:04
Uranium			0.0932	mg/L	0.00030	93	85				
Lab ID:	B23050597-001AMS	54 Sa	mple Matrix	Spike			Run: ICPMS	S207-B_230515	A	05/17/	23 03:58
Uranium			0.0960	mg/L	0.00030	95	70	130			
Lab ID:	B23050597-001AMS	D Sa	mple Matrix	Spike Dup	licate		Run: ICPMS	S207-B_230515	A	05/17/	23 04:04
Uranium			0.102	mg/L	0.00030	101	70	- 130	6.0	20	

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp		*****	Work	Order:	C2305	50297	Repo	rt Date	: 06/01/23	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E900.0	*								Batch: G	GrAB-3184
Lab ID: Th230-GrAB-3184	3 Labo	ratory Col	ntrol Sample			Run: G542N	A-2_230523A		05/27/	/23 02:30
Gross Alpha		98	pCi/L		98	70	130			
Gross Alpha precision (±)		20	pCi/L							
Gross Alpha MDC		3.8	pCi/L							
Lab ID: Sr90-GrAB-3184	3 Labo	ratory Cor	ntrol Sample			Run: G542M	/I-2_230523A		05/27/	/23 02:30
Gross Beta		550	pCi/L		115	70	130		00/2//	20 02.00
Gross Beta precision (±)		56	pCi/L							
Gross Beta MDC		3.6	pCi/L							
Lab ID: MB-GrAB-3184	6 Meth	od Blank				Run: G542N	1-2_230523A		05/27/	23 02:30
Gross Alpha		-5	pCi/L						00/21/	23 02.30 U
Gross Alpha precision (±)		2	pCi/L							U
Gross Alpha MDC		3	pCi/L							
Gross Beta		-4	pCi/L							U
Gross Beta precision (±)		2	pCi/L							
Gross Beta MDC		4	pCi/L							
Lab ID: C23050241-001AM	S 3 Samp	e Matrix	Spike			Run: G542N	-2 230523A		05/27/	23 02:30
Gross Alpha		350	pCi/L		87	70	130			
Gross Alpha precision (±)		72	pCi/L							
Gross Alpha MDC		16	pCi/L							
Lab ID: C23050241-001AM	SD 3 Samp	le Matrix	Spike Duplicate			Run: G542M	-2_230523A		05/27/	23 02:30
Gross Alpha		400	pCi/L		99	70	130	12	30	00 02.00
Gross Alpha precision (±)		81	pCi/L					•=	00	
Gross Alpha MDC		18	pCi/L							
- The RER result is 0.42.										
ab ID: C23050585-010AM	S1 3 Samp	le Matrix S	Spike			Run: G542M	-2 230523A		05/31/3	23 08:46
Gross Beta		3800	pCi/L		118	70	130		0010112	10 00.40
Gross Beta precision (±)		380	pCi/L		_		100			
Gross Beta MDC		19	pCi/L							
ab ID: C23050585-010AM	SD 3 Samp	le Matrix S	Spike Duplicate			Run: G542M	-2 230523A		05/31/3	23 08:46
Gross Beta		3700	pCi/L		115	70	130	3.1	30	.0 00.40
Gross Beta precision (±)		370	pCi/L				100	0.1	00	
Gross Beta MDC		20	pCi/L							
- The RER result is 0.22.										

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp				Work Order:	C2305	0297	Report	Date	: 06/01/23	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0								<u> </u>	Batch: RA2	26-10894
Lab ID: LCS-RA226-10894	3 La	boratory Co:	ntrol Sample			Run: TENN	ELEC-3_2305128	3		23 11:12
Radium 226		11	pCi/L		114	70	130	-	• • • •	
Radium 226 precision (±)		2.3	, pCi/L							
Radium 226 MDC		0.22	pCi/L							
Lab ID: MB-RA226-10894	3 Me	thod Blank				Run: TENN	ELEC-3 230512E	2	05/23/	23 11:12
Radium 226		0.1	pCi/L						00/20/	U
Radium 226 precision (±)		0.2	pCi/L							0
Radium 226 MDC		0.2	pCi/L							
Lab ID: C23050423-001FDUP	• 3 Sa	mple Duplica	ate			Rup TENNI	ELEC-3_230512E	•	05/02/	23 11:12
Radium 226		1.9	pCi/L				LLLO-0_2000 120	, 5.6	30	23 11.12
Radium 226 precision (±)		0.48	pCi/L					0.0	30	
Radium 226 MDC - The RER result is 0.15.		0.23	pCi/L							

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

				•	······································						
Client:	Waterlab Corp				Work Order:	C2305	60297	Repor	t Date	: 06/01/23	
Analyte		Count	Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	RA-05									Batch: RA	228-7094
Lab ID:	LCS-228-RA226-1089	4 3 Lat	oratory Cor	ntrol Sample	•		Run: TENN	ELEC-3_230512	Δ		23 13:08
Radium 2	228		5.7	pCi/L		81	70	130	•	00/10/	20 10.00
Radium 2	228 precision (±)		1.4	pCi/L			10	100			
Radium 2	228 MDC		1.2	pCi/L							
Lab ID:	MB-RA226-10894	3 Met	hod Blank				Run [,] TENN	ELEC-3_230512	٨	05/19	23 13:08
Radium 2	228		2	pCi/L				200012	`	00/10/	23 13.00
Radium 2	28 precision (±)		0.8	pCi/L							
Radium 2	28 MDC		1	pCi/L							
Lab ID:	C23050423-001FDUP	3 Sar	nple Duplica	ate			Run: TENNI	ELEC-3_230512/	`	05/19/	23 13:08
Radium 2	28		2.2	pCi/L				200012	11	30	23 13:06
Radium 2	28 precision (±)		0.91	pCi/L					11	30	
Radium 2 - The RE	28 MDC R result is 0.19.		1.3	pCi/L							

Work Order Receipt Checklist

Waterlab Corp

C23050297

Login completed by:	Hannah R. Johnson		Date R	eceived: 5/8/2023
Reviewed by:	cjohnson		Rece	eived by: cch
Reviewed Date:	5/10/2023		Carri	er name: UPS
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes 📋	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🛄	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🔄	
Chain of custody agrees with	n sample labels?	Yes 📋	No 🔽	
Samples in proper container	/bottle?	Yes 🗹	No 📋	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🔲	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗌	No 🟹	Not Applicable
Container/Temp Blank tempe	erature:	12.8°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes 🛄	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes 🗹	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The sample collection time indicated on the COC is 09:00, the collection time listed on the sample bottles is 08:30, Beth requested we use the collection time on the sample bottles-Chantel S. Johnson

Chain of Custody & Analytical Request Record

Hust by Wolfe, fully out Data.			S	www.energylab.com	ergyla	0,com) } }		5		Page 1 of 1
Account Information (Billing Information)	~		Repor	t Inform	ation (//	different (Report Information (if different than Account Information)	Information			Com	Comments
Company/Name Vateriati Corp			Company/Nanie	/Nartie	T.							
Contact Beth Myers			Contact		Belh Wvers	1						
Phone 503-363-0473			Phone.				1					
Malling Address (2603: 12th St SE			Malling Address	idress.	-					r		Please do not return
State, Zip			City, State, Zip	, 2lp								
Email belti@waterlaboorp.com			Email	peq	@water	beth@watertabcorp.com	com					
CHard Copy DEmail	Rocelve Report DHard Copy	py memal	Receive F	Receive Report Cirtard Copy EEmail	rd Copy I	BÉmal)						
Purchase Order	Boltje Order		Special Rol	Special Roport/Formelar	AG. D.ET	D/EDT (e	CILEVEL N G NELAO. C EDD/EDT (conloct (aborator)	ov ⊡ Olher				
Project Information			Matrix Codes	odes				12.6	1			
Project Name, PWSID, Permit, etc. Mill City WWTP	1P		A. Ar W: Walar	1		 		najeanhay siekiniy	naisa			All-turnaround times are
Sampler Name Sample	Sampler Phone (503) 363-04	0473	S. Solls'	<u>م</u> د						, as _a		standard unless marked as RUSH.
Sampte Origin State Oregon	EPA/State Compliance II Yes	čes El No	 Vegetalion Bioassay 	fallon: Issay	58				···		1	Energy Laboratories MUST be contacted of for to
MiNING CLENTS, please indicate sample type. 11 ore tras been processed or refered, call before sanding.	ig: I ore (NOT ground of re	(jned)*	D. Other DW . When	eudlA	u 556/5	ü	etəs			<u> </u>	bəriəsii	RUSH sample submittal for charges and scheduling – See listructions Page
Sample Identification	Sun Collec	action	Number of	Matrix	نه ا	njue	i SSO				A 99	
A LUMBURG (MINYAL, BIC)	·	Tíme				IJ	eı				S	TAT STATE DATE OF OF DATE OF O
	5/2/23	9:00 am	4 W	<u>.</u>	<u>ر</u> ر	>	2	:				
										:		
		-			1-mi.a				:			
4 .											-	
			. <u>.</u>							- -		
3.				<u> </u>	<u></u> 							
						-						In the second second
0			;		~ ~ 7							
Oustody Reinquisited by (and) Record MUST Act 1 1 1 1 2 1 Cold	Date/Time	3	<u>е</u> . И. ⁷ .	Tratter		Received by (prini)	(10)20			Date(The		station of the second se
	Date Time	Stinaturi 1				A par Xag	Tabory to A	No.	1 6 0	C. C. S. Man	6	Bignatury
Shipped By Cooler (0(s) Custom Statements (0)	eals Intect	Receipt Temp.	麗	nk	Nuse of		Payment Type	Type		Vincential Andread	Rece	Receipt Number (Sector 14)
		0	2 >		N ×	000	Cash Check	к,		\$		And Anna Anna Anna Anna Anna Anna Anna A
								-				

In certain bicumstances, samples submitted to Energy Laboratories, ind, may be subontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023

1045

SW

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-097

 Location:
 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Analys	is
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Synthetic Organic Contaminants								
Synthetic Organics, Regulated								
1,2-Dibromo-3-chloropropane	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Ethylene Dibromide	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Chlordane	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806 TJW
Endrin	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW
BHC-Gamma Lindane	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

CITMILC

LAB #: 20230502-097

097 (Cont)

Page: 2

							Analy	/sis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Heptachlor	EPA 508	В	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Heptachlor Epoxide	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Methoxychlor	EPA 508	в	ND		0.0000	mg/liter	05/10/2023	0806	TJW
Polychlorinated Biphenyls	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806	TJW
Toxaphene	EPA 508	в	ND		0.0003	mg/liter	05/10/2023	0806	TJW
2,4,5-TP Silvex	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dalapon	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dinoseb	EPA 515.3	в	ND		0.001	mg/liter	05/16/2023	0026	TJW
Pentachlorophenol	EPA 515.3	в	ND		0.0005	mg/liter	05/16/2023	0026	TJW
Picloram	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Alachlor	EPA 525.2	в	ND		0.0002	mg/liter	05/18/2023	1628	TJW
Atrazine	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Benzo(a)pyrene	EPA 525.2	в	ND		0.0001	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)phthalate	EPA 525.2	в	0.00901		0.002	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)adipate	EPA 525.2	в	ND		0.004	mg/liter	05/18/2023	1628	TJW
Hexachlorobenzene	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Hexachlorocyclopentadiene	EPA 525.2	в	ND		0.005	mg/liter	05/18/2023	1628	TJW
Simazine	EPA 525.2	В	ND		0.0004	mg/liter	05/18/2023	1628	TJW
Carbofuran	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Vydate	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Endothall	EPA 548.1	в	ND		0.01	mg/liter	05/17/2023	1726	TJW
Diquat	EPA 549.2	в	ND		0.01	mg/liter	05/11/2023	1548	TJW
2,4-D	EPA 515.3	в	ND		0.002	mg/liter	05/16/2023	0026	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Т	E	S	Т	R	Е	P	0	R	Т

		LAB	#: 2023	30502-	097	(Cont)	CITMILC	F	Page: 3	3
		#23. #	Acres	12 43 5 12				Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units		Date Time	Т	ech
Glyphosate	EPA 547	В	ND		0.05	mg/liter		05/08/2023	1220	TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

the laboratory.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023

1045

SW

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-098

 Location:
 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Volatile Organics, Regulated									
1,1,1-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,1,2-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,1-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2,4-Trichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2-Dichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2-Dichloropropane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Benzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Bitte E. Myers

Approved by:

Page 1 of 2

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

		LAB	#: 20230502	-098	(Cont)	CITMILC	Page: 2
							Analysis
Analyte	Method	Acc*	Results Qual	MRL	Units	Date	Time Tech
Carbon Tetrachloride	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
cis-1,2-Dichloroethylene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Dichloromethane	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Ethylbenzene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Monochlorobenzene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
o-Dichlorobenzene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
p-Dichlorobenzene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Styrene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Tetrachloroethylene (PCE)	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Toluene	E524.2	В	0.0496	0.0005	mg/liter	05/05/20	023 0024 TJW
trans-1,2-Dichloroethylene	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Trichloroethylene (TCE)	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Vinyl Chloride	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW
Xylenes, Total	E524.2	В	ND	0.0005	mg/liter	05/05/20	023 0024 TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Better E. Myers Approved by:

Page 2 of 2

Table 8

Wastewater Influent and Groundwater Quality Laboratory Analytical Results

Gates/Mill City Phase II Subsurface Characterization

Lab Report	Lab Sample ID	Reference	Lab		
GM1	31092	23-15512	Edge Analytical		
GM4	31097	23-15516	Edge Analytical		
GM5	31106	23-15521	Edge Analytical		
WW Influent	1045	CITMILC	Waterlab Corp.		

				Sample Location					
	Standard	Criteria	Unit	Untreated Wastewater	GM1	GM4	GM5		
Geochemical and Inorganic Con	stituents								
Antimony (Total)	0.006	MCL	mg/L	< 0.005U	< 0.001U	< 0.001U	< 0.001U		
Aluminum (Total)	0.05 - 0.2	SMCL	mg/L	0.275	0.52	3.8	2.26		
Arsenic (Total) 0.01		MCL	mg/L	< 0.002U	<0.0005U	0.0017	0.00095		
Barium (Total)	2	MCL	mg/L	0.0109	0.0035	0.0211	0.012		
Beryllium (Total)	0.004	MCL	mg/L	< 0.001U	< 0.0003U	< 0.0003U	< 0.0003U		
Cadmium (Total)	0.005	MCL	mg/L	< 0.001U	< 0.00025U	0.00019	< 0.00025U		
Chloride	250	SMCL	mg/L		1.4	2.1	1.4		
Chromium (Total) 0.1		MCL	mg/L	< 0.02U	< 0.001U				
Copper (Total)	1.3	MCL	mg/L	< 0.002U	0.002	0.0367	0.0142		
Cyanide (Total)	0.2	MCL	mg/L		< 0.005U	< 0.005U	< 0.005U		
Fluoride (Total)	4	MCL	mg/L	7.41	ND < 0.1U	ND < 0.1U	ND < 0.1U		
Iron (Total)	0.3	SMCL	mg/L	0.286	0.62	3.63	2.61		
Lead (Total)	0.015	MCL	mg/L	< 0.001U	0.00027	0.00087	0.0006		
Manganese (Total)	0.05	SMCL	mg/L	< 0.05U	0.0776	0.449	0.106		
Mercury (Total)	0.002	MCL	mg/L	< 0.001U	< 0.0002U	< 0.0002U	< 0.0002U		
Nitrite as N	1	MCL	mg/L	< 0.2U	< 0.01U	< 0.01U	< 0.01U		
Nitrate as N	10	MCL	mg/L	< 0.2U	1.10	0.02	0.46		
Selenium (Total)	0.05	MCL	mg/L	< 0.005U	< 0.001U	< 0.001U	< 0.001U		
Silver (Total)	0.1	SMCL	mg/L	< 0.01U	< 0.0002U	< 0.0002U	< 0.0002U		
Sulfate	250	SMCL	mg/L		1.6	0.9	0.3		
Thallium (Total)	0.002	MCL	mg/L	< 0.001U	< 0.0001U	< 0.0001U	< 0.001U		
Total Dissolved Solids	500	SMCL	mg/L		78	147	84		
Zinc (Total)	5	SMCL	mg/L	0.0547	0.0033	0.0087	0.0059		
Synthetic Organic Compounds (-								
2, 4-D	0.07	MCL	mg/L	< 0.002U	< 0.0001U	< 0.0001U	< 0.0001U		
2, 4, 5-TP (Silvex)	0.05	MCL	mg/L	< 0.005U	< 0.0001U	< 0.0001U	< 0.0001U		
Alachlor (Alanex)	0.002	MCL	mg/L	< 0.0002U	< 0.00005U	< 0.00005U	< 0.00005U		
Atrazine	0.003	MCL	mg/L	< 0.0003U	< 0.00005U	< 0.00005U	< 0.00005U		
Benzo(a)Pyrene	0.0002	MCL	mg/L	< 0.0001U	< 0.00005U	< 0.00005U	< 0.00005U		
BHC-gamma (Lindane)	0.0002	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U		
Carbofuran	0.04	MCL	mg/L	< 0.004U	< 0.001U	< 0.001U	< 0.001U		
Chlordane	0.002	MCL	mg/L	< 0.0002U	< 0.00010	< 0.0010	< 0.00010		
Dalapon	0.002	MCL	mg/L	< 0.005U	< 0.00010	< 0.00010	< 0.0005U		
Di(2-ethylhexyl)adipate	0.2		- /o'''	. 0.0000					
(adipates)	0.4	MCL	mg/L	< 0.004U	< 0.00005U	< 0.00005U	< 0.00005U		
Di(2-ethylhexyl)phthalate (phthalates)	0.006	MCL	mg/L	0.00901	< 0.0001U	< 0.0001U	< 0.0001U		
Dibromochloropropane (DBCP)	0.0002	MCL	mg/L	< 0.0000U	< 0.00002U	< 0.00002U	< 0.00002U		
Dinoseb	0.007	MCL	mg/L	< 0.001U	< 0.0001U	< 0.0001U	< 0.0001U		
Diquat	0.02	MCL	mg/L	< 0.01U	< 0.0004U	< 0.0004U	< 0.0004U		
Ethylene Dibromide (EDB)	0.00005	MCL	mg/L	< 0.0000U	< 0.00002U	< 0.00002U	< 0.00002U		

Endothall	0.1	MCL	mg/L	< 0.01U	< 0.005U	< 0.005U	< 0.005U
Endrin	0.002 M		mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Glyphosate	0.7	MCL	mg/L	< 0.05U	< 0.005U	< 0.005U	< 0.005U
Heptachlor	0.0004	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Heptachlor Epoxide	0.0002	MCL	mg/L	< 0.00001U	< 0.00005U	< 0.00005U	< 0.00005U
Hexachlorobenzene (HCB)	0.001	MCL	mg/L	< 0.0003U	< 0.00005U	< 0.00005U	< 0.00005U
Hexachlorocyclopentadiene	0.05	MCL	mg/L	< 0.005U	< 0.00005U	< 0.00005U	< 0.00005U
Methoxychlor	0.04	MCL	mg/L	< 0.0000U	< 0.00005U	< 0.00005U	< 0.00005U
Pentachlorophenol	0.001	MCL	mg/L	< 0.0005U	< 0.00004	< 0.00004	< 0.00004
Picloram	0.5	MCL	mg/L	< 0.005U	< 0.0001U	< 0.0001U	< 0.0001U
Simazine	0.004	MCL	mg/L	< 0.0004U < 0.0005U		< 0.00005U	< 0.00005U
Total Polychlorinated Biphenyls			0,				
(PCBs)	0.0005	MCL	mg/L	< 0.0002U	< 0.0002U	< 0.0002U	< 0.0002U
Toxaphene	0.003	MCL	mg/L	< 0.0003U	< 0.00 1U	< 0.00 1U	< 0.00 1U
Vydate (Oxamyl)	0.2	MCL	mg/L	< 0.004U	< 0.00 1U	< 0.00 1U	< 0.00 1U
Volatile Organic Compounds (V	OCs)						
1, 1-Dichloroethylene	0.007	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2-Dichloroethane (EDC)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2-Dichloropropane	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 2 ,4-Trichlorobenzene	0.07 MCL		mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 1, 1-Trichloroethane	0.2	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
1, 1, 2-Trichloroethane	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Benzene	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Chlorobenzene							
(monochlorobenzene)	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Carbon Tetrachloride	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
cis-1,2-Dichloroethylene	0.07	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Ethylbenzene	0.7	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Methylene Chloride	0.005	MCL	mg/L		< 0.0005U	< 0.0005U	< 0.0005U
o-Dichlorobenzene (1, 2-DCB)	0.6	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
p-Dichlorobenzene (1, 4-DCB)	0.075	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Styrene	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Tetrachloroethylene (PCE)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Toluene	1	MCL	mg/L	0.0496	< 0.0005U	< 0.0005U	< 0.0005U
Total Xylenes	10	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
trans-1,2-Dichloroethylene	0.1	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Trichloroethylene (TCE)	0.005	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Vinyl chloride	0.002	MCL	mg/L	< 0.0005U	< 0.0005U	< 0.0005U	< 0.0005U
Radionuclides							
Alpa, Gross	15	MCL	pCi/L	-5	< 3U	< 3U	< 3U
Beta, Gross	50	MCL	pCi/L	14.8	< 4U	< 4U	< 4U
Radium 226, 228 Combined	5	MCL	pCi/L	2.6	< 1U	< 1U	< 1U
Uranium	30	MCL	mg/L	< 0.0003U	< 0.001U	< 0.001U	< 0.001U
Notes							

Notes

MCL = maximum contaminant level for drinking water -- = not tested Bold = Detected

Constituent Detected above MCL and/or SMCL

* = Radium 226/228 Combo

LRL = lower reporting limit

XXX U = indicates that the constituent was not detected above the method reporting limit of XXX

-ATTACHMENT E-----

Groundwater Sampling Field Forms

Groundwater Sampling Field Log Mill City, Oregon Groundwater Sampling

		Groundwater Sampling						Date: 5 29 23		
							Well ID: GM1MW1			
Total			/	* shickor	8.5'		(X) 0.10			
Depth:	40.	2	17.9 m	TOC	945	22.3	5. S		3.6	
(ft)			(-) DTW: (ft)	•	Time	=	(X) 0.65	gal/feet	= Well Casing Volume	
Field Co	Field Conditions: 60F, sunny									
Decont	Decontamination: Alconox + tap wash; Tap rinse; DI rinse									
PURGE INFORMATION										
	Purge Method: Waterra Hydrolift Pump									
	Purge Method:									
\checkmark	\checkmark Refer to calibration log this date, YSI # 4									
Pump Suction Depth (ft BTOC): ~ 34.2 Purge water disposal: Drums										
Type of	Flow Th	Through Cell: 10 oz cup X YSI Prod			YSI ProQu	uattro Flow Through Cell				
Comme	ents/Exc	eptions	to SAP:							
Time	Purge Volume	Temp.	sc	DO	pН	ORP	Purge Rate	DTW		
nine	(gallons)	(°C)	(uS/cm)	(mg/L)	рп	(mV)	(mL/min)	(ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)	
Stabilizati	on Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	24	1922	<100 NTU ideal	
10:35	Pump On	, Water F	Reaches the Pu	rge Bucke	et			Initial		
10:40	0.5	12.0	94.9	7.A0	6.76	139.9	0.75	18.0	med/32.3 NTU/ No color	
10:50	2.5	11.7	94.8	7.11	6.62	92.6	u	u	¥	
10:55	4.0	11-8	94.0	6.95	6.63	90.5	ч	и	17	
11 :105	4.5	11.6	93.7	6.25	6.48	91.6	16	и	mcd/24.5 NTU/NO COL	
(: (0	5.5	11.7	93.3	6.24	6.66	92,9	и	ti -	J. J.	
11 : 15	6.5	11.7	93.4	6.13	6.53	93.4	ц	u	4	
11 : 20	7.5	11.7	93.3	6.02	6.52	93.8	и	и	U I	
:										
:										
(1)										
	Start Sampling									
Il : 25 End Sampling										

* VC=Very cloudy Cl=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

Laboratory Analytical Program Mill City, Oregon Groundwater Sampling

Date: 5 / 29 / 23	Time:	: 20					
Sampling Method (circle one):		dedicated purg	e tube disconne	cted from flow t	hrough cell		
	В	other:				-	
Sample I.D. <u> </u>	Number of sample containers (circle)	Volume of each container	Container Type	e Pres.	Analy	tical Met	hod
							/
					-		
QAQC: Sample ID & Time>	Rotate dup lo		L				
Dup = MW-14-MMYY							-
Sampling Criteria (circle one): Collect anytime: stabile paramete After 3 well casing volumes: stabil After 5 well casing volumes: unsta Pump dry: return anytime if there	e parameters Ibile paramet	s but uncontrolle ers with or with	ed/falling water out drawdown c	level control		2 3 4	1 A.
Comments:			8 e -		5		
		1 V		\$) 			16.5
	k.		5				
		17. I	8	P.	ж.	0	1 A
198-			• 1	(* 1			
	-8 <u>1</u>			1 J II			۹, ۹
		¹ 1 2	18 A		3.10		
COC: Client = Keller, Sampler = GS							
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville	e, OR 97070			

Groundwater Sampling Field Log Mill City, Oregon

Groundwater Sampling

			Groundwater Sampling				Date: 5 29 23			
									Well ID: GMS MWI	
Total Depth: (ft)	75.	7	60.0 1220 15.7 (X) 0.16 (-) DTW: (ft) Time = (X) 0.65 gal/fee				gal/feet	2.5 = Well Casing Volume		
	ondition	s:	() D W. (11)		Time	-		Bullicer		
			nox + tap w	ash: Tar	rinse:	Dl rinse				
						FORMA				
\checkmark	Purge N	Aethod:	Waterra Hy	/drolift l	Pump					
Purge Method:										
	Refer to	o calibra	tion log this	date, Y	'SI # 4					
Pump S	Pump Suction Depth (ft BTOC): Purge water disposal: Drums								ater disposal: Drums	
Type of	f Flow Th	nrough (Cell:		10 oz cu	р	х	YSI ProQu	attro Flow Through Cell	
Comme	Comments/Exceptions to SAP:									
Time	Purge Volume (gallons)	Temp. (°С)	SC (uS/cm)	DO (mg/L)	рН	ORP (mV)	Purge Rate (mL/min)	DTW (ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)	
Stabilizati	ion Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	144	3223	<100 NTU ideał	
12:30	Pump On	i, Water F	leaches the Pu	rge Bucke	et			Initial		
12:40	0.25	12.4	83.1	9.30	7.47	-27.2	0.16	կ	low-med/35/NTU/brown	
12:45	1.5	14.6	79.9	8.77	7.49	-26.6	М	¥I.	10wmed/35/NTU/brown med/330NTU/brown	
n:57	3.0	11.7	80.2	8.99	7.35	-4.8	0.19	u	ч	
13:02	4.0	14.8	74.6	6.93	7.35	-4.3	ι	μ	*1	
13:14	5.75	11.4	80.1	9.22	7.44	4.3	Li.	ч	" / 130 NTU/ "	
13 : 18	7.0	11.0	80.2	9.36	7,40	4.5	31	11	ti	
13 :23	8.5	(0.9	80.5	9.55	7.36	6.1	ч	ч	" / 125 NTU/ "	
13:27	0.0	11.1	80.3	942	7.32	6.7	16	и	" /124 NTU/"	
;										
3										
13:27	Start Sam	npling								
13:30	End Samp	oling								
			abthy Cloudy VSC-							

VC=Very cloudy Cl=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

Laboratory Analytical Program Mill City, Oregon Groundwater Sampling

Date: 5 /29 /23	Time: 13	: 30					
Sampling Method (circle one):			e tube disconnec	ted from flow	through cell		
Ω.	В	other:	g) i	10			
Sample I.D. GM\5 MW 0523	Number of sample						
GMXMWXMMYY	containers (circle)	Volume of each container	Container Type	Pres.	Analy	tical Meth	nod
			1:				
QAQC: Sample ID & Time>							
QAQC. Sample ID & Time>							
Dup = MW-14-MMYY	Rotate dup lo	cation					
Sampling Criteria (circle one):							
Collect anytime: stabile paramete	rs over 15 mi	nutes(4 reading	s) with controlled	d drawdown		1	
After 3 well casing volumes: stabil	e parameters	but uncontrolle	ed/falling water l	evel		2	
After 5 well casing volumes: unsta	bile paramet	ers with or with	out drawdown co	ontrol		3	
Pump dry: return anytime if there	is adequate	volume for cont	ainers within 24	hours		4	
Comments:	2			, d. 1	1.1		
e en planten de	-		e de la companya de				
. P		<i>.</i> Г.,	118 A.M.	X	+ 050	S.C.	
11.			21.0	C3	Ξ. df	7 -	$\mathbb{D}[X_{i}]_{i=1}^{n}$
 a policie in transmissione 			^h a 0			810	
	27			, v			
		9	get in the		· · ·	1. P	\$ L
COC: Client = Keller, Sampler = GS	l, 650 NE Hol	laday Street, Po	rtland, OR 97232	1.05			
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville,	, OR 97070			

Groundwater Sampling Field Log Mill City, Oregon Groundwater Sampling

	Groundwater Sampling					ipling		Date: 5 29 23	
									Well ID: GM4MW1
Total Depth: (ft)	41.6		<i>ち.</i> 0 (-) DTW: (ft)	1	名いら Time	26.6	(X) 0.65	gal/feet	4 .3 = Well Casing Volume
Field Co	ondition	s: 651	F sunny						
Decont	aminatio	on: Alco	nox + tap w	ash; Tap	o rinse;	DI rinse			
	1			PU	JRGE IN	FORMA	TION		
	Purge N	/lethod:	Waterra Hy	drolift I	Pump				
Purge Method:									
	Refer to	o calibra	tion log this	date, Y	'SI # 4				
Pump S	Suction E	Depth (f	t BTOC):					Purge w	ater disposal: Drums
Type of	Flow Th	rough (Cell:		10 oz cu	р	Х	YSI ProQu	attro Flow Through Cell
Comme	Comments/Exceptions to SAP:								
Time	Purge Volume (gallons)	Temp. (°C)	SC (uS/cm)	DO (mg/L)	рН	ORP (mV)	Purge Rate (mL/min)	DTW (ft BTOC)	Pump Speed/*Clarity/ Color/Remarks (NTU)
Stabilizati	on Criteria	± 0.2	±3% (SC>100) ±5% (SC≤100)	± 0.3	± 0.1	± 10	20		<100 NTU ideal
14:20	Pump On	, Water R	leaches the Pu	rge Bucke	et			Initial	
14:25	2.0	13.9	206.8	0.93	7.60	-145.7	0.5	Y	med/397NTU/gray
14:30	5.0	13.7	207.2	0.88	7.40	-184.5	ч	и	" /272NTU / ""
14:35	7.0	13.8	205.6	0.87	7.54	-204.7	4	4	1/183 NTU/ "
14:40	[0,0]	13.8	204.5	0.82	7.51	-206.8	u	4	"/ 132 NTU / "
14:45	12,5	13.7	204.1	0.81	7.50	-207A	Ч	61	4/ 125 NTU / 4
19:50	16.0	13.7	204.2	0.80	7.48	-200.5	11	μ	n/86.6 NTU/4
	Start Sam	pling							
	End Sam								

* VC=Very cloudy CI=Cloudy SC=Slightly Cloudy VSC=Very Slightly Cloudy AC=Almost Clear C=Clear CC=Crystal Clear

Laboratory Analytical Program Mill City, Oregon Groundwater Sampling

Date: 5 / 29 / 23	Time: 14	:55					
Sampling Method (circle one):	dedicated purg	e tube disconnec	ted from flow t	hrough cell			
	В	other:					
Sample I.D. GM4MW1 0523 GWXXMWXMMYY	Number of sample containers	Volume of		- 24			
G	(circle)	each container	Container Type	Pres.	Analy	tical Met	hod
							-
QAQC: Sample ID & Time>							_
Dup = MW-14-MMYY	Rotate dup lo	cation					
Sampling Criteria (circle one):							
Collect anytime: stabile paramete	ers over 15 mi	nutes(4 reading	s) with controlled	l drawdown		(1)	
After 3 well casing volumes: stabi	•		-			2	
After 5 well casing volumes: unsta						3	
Pump dry: return anytime if there	e is adequate	volume for cont	ainers within 24 h	nours		4	
Comments:	1	A Tarre		1 5		- 21	
8	28		a 1	-e 11		-	- Y. 4.
- 11 + 12 - 8			51.86	<u>e</u> :	÷ 2	1	14 E
P		1	54	- R.C	¥.,	1.8	· ·
	E.	> 8 ¹⁰		1.000	5		- 5 - 5 Bt - 5
8	ΰ.	$H = -\infty$	n fra di My	- 54 - X	1	1 WM	$\{X_{1}, u_{1}\}$
COC: Client = Keller, Sampler = GS							
Lab: Edge Analytical (Wilsonville),	9725 SW Cor	nmerce Cir Suite	e A2, Willsonville,	OR 97070			

-ATTACHMENT F

MOUNDSOLV Model Results

MEMORANDUM

August 10, 2023

TO: Matt Kohlbecker, GSI Water Solutions, Inc.

FROM: Jason Keller, GeoSystems Analysis, Inc.

RE: Gates – Mill City Groundwater Mounding Analysis

INTRODUCTION

Geosystems Analysis, Inc. (GSA) conducted a groundwater mounding analysis for the alluvial aquifer beneath Gates and Mill City, Oregon in support of the treated wastewater infiltration feasibility assessment being completed by GSI Water Solutions and Keller and Associates. Three potential infiltration basin locations were simulated (Figure 1):

- Baughman Lucas (GM1)
- 4th Ave Right of Way (ROW) (GM4)
- Weyerhaeuser (GM5)

A subsurface characterization program was completed by GSI and GSA, consisting of shallow (i.e., test pit) and deep (i.e., borehole) soil texture characterization, depth to groundwater measurements, soil saturated hydraulic conductivity (K_{sat}) measurements, and aquifer horizontal saturated hydraulic conductivity K_{sat-h} measurements (GSI/GSA, 2023; GSI, 2023). Information collected from the subsurface characterization program was applied in the groundwater mounding analysis presented herein.

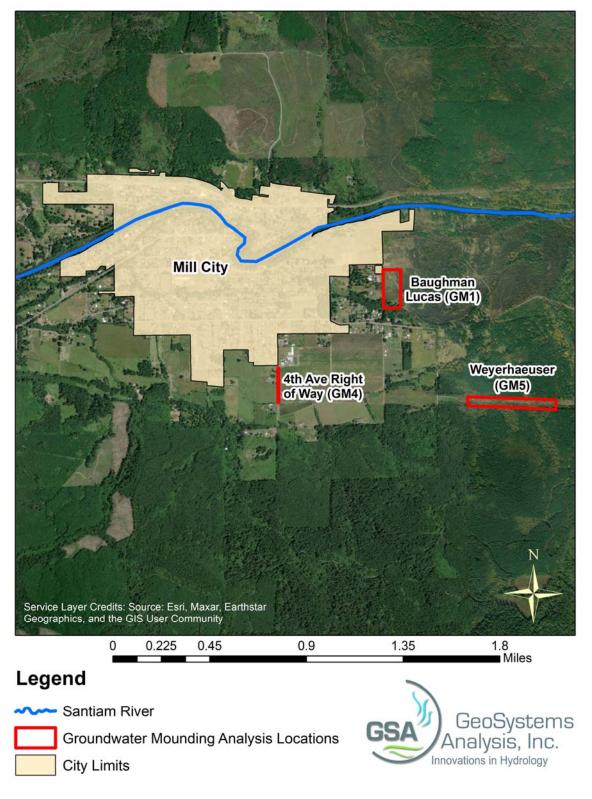


Figure 1. Potential infiltration basin locations

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MmoundingAnalysis\DRAFT Gates-Mill City_Groundwater Mounding Analysis_v2

METHODS

The Zlotnik (2017) analytical solution for groundwater mounding as applied in MOUNDSOLV (Hydrosolve, 2023) was used to estimate the steady-state groundwater mound that may develop beneath the potential infiltration facilities in response to recharge of treated wastewater. The Zlotnik analytical solution considers both horizontal and dipping aquifers that are assumed to be of infinite extent, homogenous, and isotropic. Required model parameters for steady-state simulations include:

- Recharge rate.
- Recharge basin infiltration area.
- Aquifer horizontal saturated hydraulic conductivity (K_{sat-h}).
- Aquifer initial saturated thickness.
- Aquifer gradient.

The recharge rate was set equal to the projected year 2045 effluent generation rate of 0.2375 million gallons per day (MGD) (M. Kohlbecker, personal communication, April 12, 2023) and was assumed to be continuous in time. For this initial feasibility assessment, the infiltration facility was conservatively assumed to consist of one, square shaped basin. The infiltration area was sized to accept 0.2375 MGD assuming a long-term infiltration rate equal to 15 percent of the mean measured near surface K_{sat} for the site, as measured by GSA (2023). The 15 percent K_{sat} reduction factor was applied to account for potential surface clogging (EPA, 1984).

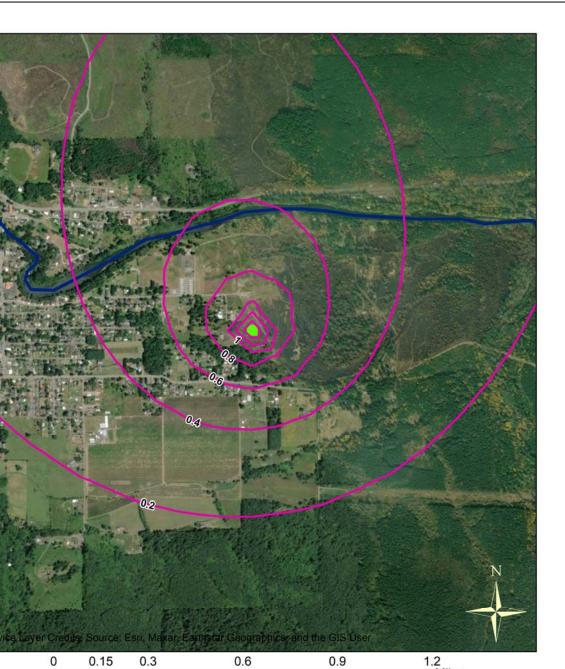
Aquifer K_{sat-h} was assigned from aquifer slug test measurements performed by GSI (2023). Initial (pre-infiltration) depth to groundwater and aquifer saturated thickness was estimated from observed depth to groundwater (GSI, 2023) and publicly available deep borehole logs (M. Kohlbecker, personal communication, June 20, 2023). The regional aquifer gradient and direction was calculated from reported static groundwater levels spatially interpolated by GSI. Groundwater mounding model parameters for each site are summarized in Table 1.

Parameter	Site				
Parameter	GM1	GM4	GM5		
Recharge Volume	0.2375 MGD	0.2375 MGD	0.2375 MGD		
Recharge Duration	Continuous	Continuous	Continuous		
Infiltration Area	0.81 acres	6.23 acres	26.99 acres		
Long Term Infiltration Rate	0.90 ft/day	0.12 ft/day	0.03 ft/day		
Aquifer Horizontal Hydraulic Conductivity (Ksat-h)	370 ft/day	3.54 ft/day	33.0 ft/day		
Depth to Water Table	15.4 ft bgs	30.0 ft bgs	58.3 ft bgs		
Aquifer Initial Saturated Thickness	44.6 ft	147 ft	122 ft		
Aquifer Gradient and Direction	0.0139 ft/ft N-NW	0.0139 ft/ft N-NW	0.0139 ft/ft N-NW		

Table 1. Groundwater mounding model parameters

RESULTS

Model predicted steady-state groundwater mounding are presented for sites GM1, GM4, and GM5.


Site GM1

Site GM1 model predicted steady-state maximum mound height above the pre-infiltration water table and depth to the mound below ground surface are presented in Table 2. Model predicted steady-state mounding extent is provided in Figure 2. The predicted steady-state maximum mound height was relatively minor (1.6 ft) due to the high aquifer K_{sat-h} measured beneath the site (Table 1). The pre-infiltration depth to groundwater at GM1 is relatively shallow (Table 1), resulting in a maximum predicted depth to the groundwater mound of 13.8 ft bgs. The predicted groundwater mounding is less than 1 ft at approximately 500 ft from the center of the simulated basin.

Table 2. Site GM1 model predicted steady-state maximum mound height and depth below surface

Maximum Mounding	Depth to Maximum
Height (ft above pre-	Groundwater
infiltration water table)	Mound (ft bgs)
1.6	13.8

GeoSystems Analysis, Inc.

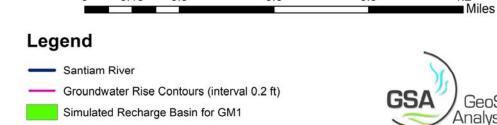


Figure 2. Site GM1 model predicted steady-state groundwater mounding extent

GeoSystems Analysis, Inc.

2310 - Subsurface Characterization of the Proposed Gates - Mill City Infiltration Site\Reports\MmoundingAnalysis\DRAFT Gates-Mill City_Groundwater Mounding Analysis_v2

Site GM4

Site GM4 model predicted steady-state maximum mound height above the pre-infiltration water table and depth to the mound below ground surface are presented in Table 3. Model predicted steady-state mounding extent is provided in Figure 3. A relatively large maximum mound height of 47.4 ft was predicted, primarily due to the relatively low measured aquifer K_{sat-h} (Table 1). Considering the pre-infiltration depth to groundwater of 30 ft bgs, the model predicted mound height equates to mounding to the basin surface. Preferably, the groundwater mound should be at least 10 ft or greater below the surface to prevent the groundwater mound from impacting infiltration rates or resulting in the daylighting of groundwater outside of the basin footprint. Predicted mounding of 30 ft or greater, which would result in mounding to the surface, is predicted to extend approximately 1,400 ft from the center of the simulated basin.

The GM4 groundwater mounding model was applied to evaluate: 1) the steady-state infiltration rate that can be achieved while maintaining a maximum mound height that is 10 ft bgs, and; 2) the basin infiltration area necessary to infiltrate 0.2375 MGD while maintaining a maximum mound height that is 10 ft bgs. Results of this analysis are presented in Table 3. The model predicted a maximum steady-state infiltration rate of 0.10 MGD, 42% of the target rate of 0.2375 MGD. Alternatively, the model predicted an infiltration area of 1,873 acres to infiltrate 0.2375 MGD while maintaining a groundwater mound that is not shallower than 10 ft bgs. These model results are due to a combination of the shallow depth to pre-infiltration water table of 30 ft bgs and the relatively low aquifer K_{sat-h} (Table 1).

Scenario	Maximum Mounding Height (ft above pre- infiltration water table)	Depth to Maximum Groundwater Mound (ft bgs)
Base Case (Table 1)	47.4	0
0.065 MGD Infiltration	20	10
364,064 Infiltration Area	20	10

Table 3. Site GM4 model predicted steady-sta	te maximum mound height and depth below surface
--	---

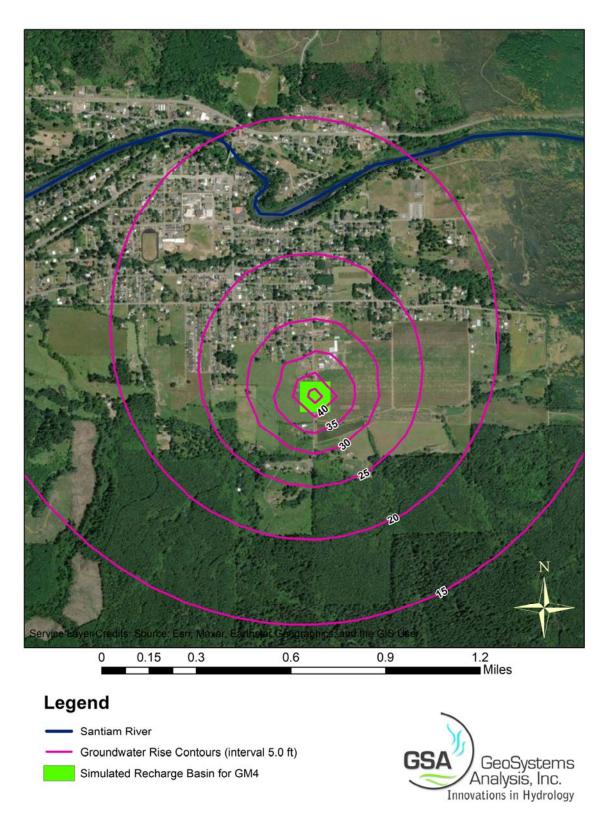


Figure 3. Site GM4 model predicted steady-state groundwater mounding extent for the base case scenario

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MmoundingAnalysis\DRAFT Gates-Mill City_Groundwater Mounding Analysis_v2

Site GM5

Site GM5 model predicted steady-state maximum mound height above the pre-infiltration water table and depth to the mound below ground surface are presented in Table 4. Model predicted steady-state mounding extent is provided in Figure 4. The predicted steady-state maximum mound height was 5.0 ft, resulting in a maximum predicted depth to the groundwater mound of 53.3 ft bgs. The smaller predicted groundwater mound compared to site GM4 is due to a larger measured aquifer K_{sat-h} and larger basin infiltration area (Table 1). It's important to note that the mounding model does not consider the impact of potential low permeability soils above the water table. Near surface and deeper subsurface characterization at GM5 indicates the soil profile to groundwater consists of thick, continuous layers of finer-textured, low permeability soils that are likely to create perched water conditions above the water table (GSI/GSA, 2023; GSI, 2023), potentially reducing basin infiltration rates.

Table 4. Site GM5 model	predicted steady-state maximum m	nound height and depth below surface
-		8

Maximum Mounding	Depth to Maximum
Height (ft above pre-	Groundwater
infiltration water table)	Mound (ft bgs)
5.0	53.3

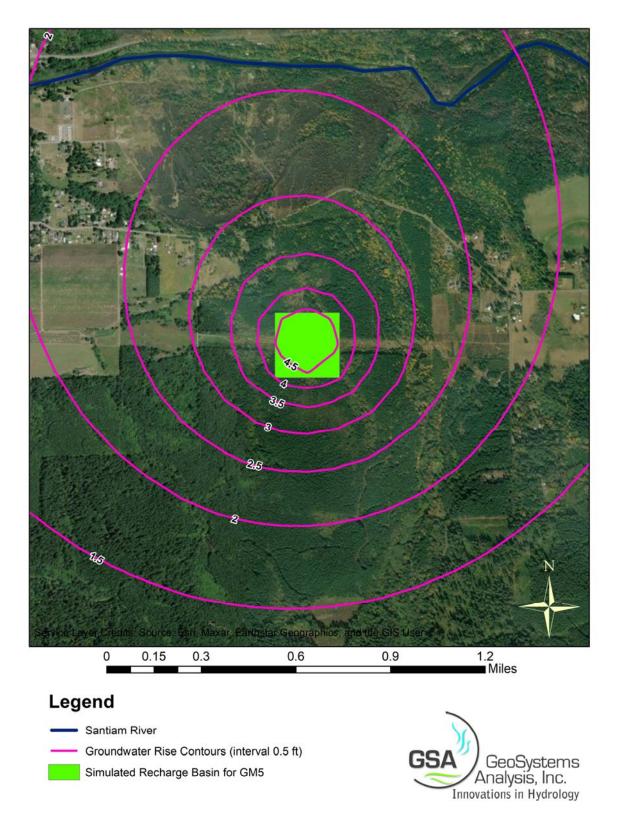


Figure 4. Site GM5 model predicted steady-state groundwater mounding extent

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MmoundingAnalysis\DRAFT Gates-Mill City_Groundwater Mounding Analysis_v2

CONCLUSIONS

The mounding model analysis predicts that maximum groundwater mounding at site GM4 extends to the surface at a distance of approximately 1,400 ft from the center of the basin at the target infiltration rate of 0.2375 MGD, indicating groundwater mounding at this location may be prohibitive to infiltration basin operations. Reducing the infiltration rate at GM4 to 42% of the target infiltration rate or having an excessively large infiltration area in excess of 1,873 acres would be necessary to maintain a steady-state maximum groundwater mound of 10 ft bgs. Model predicted steady-state maximum groundwater mounding at sites GM1 and GM5 were predicted to result in minimum depth to water of 13.8 ft and 53.3 ft bgs, respectively, indicating groundwater mounding at these locations may not impact infiltration rates. However, the unsaturated zone at GM5 consists of mostly continuous finer-textured, low permeability soils that may create perched water conditions within the unsaturated zone and potentially reduce basin infiltration rates.

REFERENCES

- EPA, 1984. Process Design Manual for Land Treatment of Municipal Wastewater, Supplement on Rapid Infiltration and Overland Flow. EPA 625.1-81-013a.
- Hydrosolve, Inc, 2023. Moundsolv version 4.0. Available online at the following link: http://www.aqtesolv.com/moundsolv.htm
- GSA, see GeoSystems Analysis, Inc.
- GSI, see GSI Water Solutions, Inc.
- GSI/GSA, see GSI Water Solutions, Inc. and GeoSystems Analysis, Inc.
- GSI Water Solutions, Inc. and GeoSystems Analysis, Inc., 2023. Gates/Mill City Deep Soil Characterization and Slug Testing Results, Marion and Linn Counties, Oregon. Technical Memorandum to Chris Einmo, Marion County, dated August XX, 2023
- GeoSystems Analysis, Inc., 2023. Gates Mill City Infiltration Testing. Technical Memorandum to Matt Kohlbecker, GSI Water Solutions, dated June 2, 2023.
- Zlotnik, V.A., Kacimov, A. and A. Al-Maktoumi, 2017. Estimating groundwater mounding in sloping aquifers for managed aquifer recharge, Groundwater, vol. 55, no. 6, pp. 797-810.