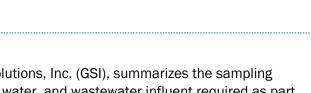


TECHNICAL MEMORANDUM

Water Quality Sampling and Analysis to Support the Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon

To: Mary Camarata, Oregon Department of Environmental Quality

From: Erik Hedberg, PE, CWRE, GSI Water Solutions, Inc.


Jesse Hall, GIT, GSI Water Solutions, Inc.
CateLee Kambur, GSI Water Solutions, Inc.

CC: Chris Einmo, PE, Marion County

Peter Olsen, PE, Keller Associates, Inc.

Pamela Villarreal, PE, Keller Associates, Inc.
Matt Kohlbecker, RG, GSI Water Solutions, Inc.

Date: October 31, 2024

This Technical Memorandum (TM), prepared by GSI Water Solutions, Inc. (GSI), summarizes the sampling and laboratory analyses of groundwater, surface water, seep water, and wastewater influent required as part of developing a treated wastewater infiltration basin at Site GM1 in Mill City, Oregon (Figure 1). GSI collected samples between May 2023 and June 2024.

1. Introduction

As documented in previous GSI technical memorandums, subsurface hydrogeologic investigations of numerous sites surrounding Mill City, Oregon (GSI 2023a, GSI 2023b, GSI 2024) have indicated Site GM1 to be the most favorable for infiltration. Numerous water quality sampling events have been conducted at locations downgradient of the proposed infiltration basins at Site GM1 to establish background concentrations of various parameters including analytes regulated by the Safe Drinking Water Act (SDWA).

As summarized in Table 1, water quality sampling completed to support the evaluation of treated wastewater infiltration in Mill City, Oregon, includes analysis of groundwater from Site GM1 and treatment plant monitoring wells, groundwater from downgradient seeps adjacent to the Santiam River, surface water from the Santiam River, and wastewater influent from the Mill City Wastewater Treatment Plant.

Table 1. Analytes Sampled by Sample Site

Sample Site:		Site GM1	L Monito	ring Well	s		Treatme	ent Plan	t Monito	ring Well	s	Ot	her
Analytes Sampled	GM1- MW1	GM1- MW2	GM1- MW3	GM1- MW4	GM1- MW5	MW-1	MW-2	MW- 3d	MW- 3s	MW-4	Influent	River	Seeps
PFAS		Х	Х			Х	Х	Х	Х	Х	Х	Х	
BOD												Х	X
TSS												Х	Х
TDS	Х	X		Х	Х						Х	Χ	Х
Nitrate	Х	Х		Х	Х						Х		Х
pH (lab)	Х	Х		Х	Х						Х	Χ	Х
VOCs	Х	Х		Х	Х						Х		
SOCs	Х			Х							Х		
SVOCs		Х		Х							Х		
General Chemistry	Х	Х		Х	Х						Х		
Total Metals	Х	Х		Х	Х						Х		
Anions		Х		Х							Х		
Ammonia		Х		Х							Х		
Total Cyanide	Х	Х		Х							Х		
Potassium	Х	Х		Х	Х						Х		
Total Phosphorus		Х		Х							Х		
Alkalinity	Х	Х		Х	Χ						Х		
Conductivity (lab)		Х		Х							Х		
Fluoride		Χ		Х	Х						Х		
Radionuclides	Х			Х	Х						Х		
Field Parameters	Х	Х	Х	Х		Х	Х	Х	Х	Х			

Notes:

PFAS: per- and polyfluoroalkyl substances

TSS: total suspended solids

VOCs: volatile organic compounds

SVOCs: semivolatile organic compounds

BOD: biochemical oxygen demand

TDS: total dissolved solids

SOCs: synthetic organic compounds

2. Sampling Locations and Methods

This section summarizes the methods used to collect water quality samples summarized in Table 1, including groundwater sampling at Site GM1 and the Mill City Treatment Plant (Section 2.1), surface water sampling from the Santiam River (Section 2.2), wastewater sampling from the City's existing treatment plant influent (Section 2.3), sampling of seeps adjacent to the Santiam River (Section 2.4), and specialized methods for sampling of PFAS at select locations (Section 2.5).

2.1 Groundwater Sampling

Site GM1 and Mill City Treatment Plant monitoring wells were sampled using Environmental Protection Agency (EPA) low flow (minimal drawdown) sampling procedures summarized in our Work Plan Addendum No. 4 (GSI 2024) and based on the April 1996 EPA Groundwater Report (Puls and Barcelona, 1996). The locations of groundwater samples collected at Site GM1 are shown on Figure 2, and the locations of groundwater samples collected at the Mill City Treatment Plant are shown on Figure 3.

Water was purged from the monitoring wells using a peristaltic pump connected to disposable silicone and low-density polyurethane (LDPE) tubing, which was replaced between sample locations. Flow rate was calculated by measuring the amount of water purged from the well in 1 minute. Field parameters (pH, dissolved oxygen, oxidation-reduction potential, specific conductivity, and turbidity) were measured with a Yellow Springs Instrument (YSI) Meter with flow through cell and/or a Hatch Turbidity Meter. Monitoring wells were purged until field parameters stabilized in general accordance with EPA low-flow guidelines. Once field parameters stabilized, the YSI and flow-through cell were removed from the system before sample bottles were filled. Static water level measurements were taken before sampling and every 5 minutes to monitor drawdown during purging. None of the monitoring wells showed excessive drawdown exceeding EPA requirements during water sampling.

Groundwater samples were packaged in ice in a cooler and sent to the analytical laboratory under standard chain-of-custody for analysis of VOCs, SVOCs, SOCs, total metals, ammonia, cyanide, phosphorus, solids, general chemistry parameters, and /or radionuclides.

2.2 Surface Water Sampling

Two surface water grab samples were collected from the Santiam River at the locations shown on Figure 3. Samples were collected using a peristaltic pump with the intake tubing submerged upstream of the individual collecting the sample. The intake of sample tubing was placed at the midpoint of the water column.

Surface water samples were packaged in ice in a cooler and sent to the analytical laboratory under standard chain-of-custody for analysis of TDS, TSS, BOD, and pH.

2.3 Wastewater Sampling

Several wastewater samples have been collected since May 2023 from the manhole location shown on Figure 3. The wastewater sample collected on May 1, 2024 consisted of three samples (morning, noon and evening) collected in the same container. During influent sample collection events, the tubing intake was submerged a minimum of 6 inches below the surface of the wastewater, approximately 2 ft below the surface of the manhole.

Wastewater samples were packaged in ice in a cooler and sent to the analytical laboratory under standard chain-of-custody for analysis of VOCs, SVOCs, SOCs, total metals, ammonia, anions, cyanide, phosphorus, solids, general chemistry parameters, and/or radionuclides.

2.4 Seep Sampling

Starting at the upriver boundary of this area downgradient from Site GM1, GSI staff traversed the riverbank and identified 9 visible seeps that were accessible and large enough to sample. The location of the seep samples are shown on Figure 3.

Seeps identified by GSI staff were sampled directly using a sample bottle where possible, or by using a clean polyvinyl chloride (PVC) pipe or flexible length of tubing to redirect or siphon water samples from seeps with low flow rates.

In areas where seeps exhibited sheet flow geometry, GSI staff estimated seep discharge rates by multiplying the average time it took to fill a bottle of known volume using a length of 1-inch internal diameter (ID) PVC inserted into the flow of the seep by the width of the seep in inches. Where sheet flow geometry was not evident, GSI staff estimated seep discharge rate visually where possible.

Sampling Seep #5

Water samples were packaged in ice in a cooler and sent

to for the analytical laboratory under standard chain-of-custody for analysis of nitrate, TDS, TSS, BOD, and pH.

The approximate locations and estimated discharge rate of seeps sampled are provided in Table 2 below.

Table 2. Location and Discharge Rate of Seeps

Sample	Sample	e Location	Discharge Rate	Discharge Rate	
ID	Latitude	Longitude	(mL/second)	(gal/minute)	Comments
1	44.752469	-122.471274	996	15.8	
2	44.752668	-122.470901	2171	34.4	
3	44.753274	-122.469628	-	45 to 60	
4	44.753444	-122.469365	-	0.06	Very subtle sheen to ponded water
5	44.753358	-122.469071	490	7.7	
6	44.753576	-122.468947	-	<0.06	Definite sheen to ponded water
7	44.753820	-122.468419	-	-	Unable to estimate flow
8	44.753931	-122.467959	-	-	Unable to estimate flow
9	44.754285	-122.466250	-	<0.06	

2.5 PFAS Sampling

Site GM1 monitoring wells (GM1-MW2 and GM1-MW3), Treatment Plant monitoring wells (MW-1, MW-2, MW-3d, MW-3s, and MW-4), influent wastewater, and surface water from the Santiam River (collected downgradient of the proposed infiltration basin location) were sampled and analyzed for PFAS using EPA method 1633 as described in our Work Plan Addendum No. 4 (GSI 2024). Sampling was also conducted in accordance with the methods summarized in Section 2.1 through Section 2.4. Extra care was taken to avoid wearing PFAS-containing clothing or using PFAS-containing equipment and products to avoid contaminating samples. Water samples were packaged in ice in a cooler and sent under standard chain-of-custody to Anatek Labs, Inc. for PFAS analysis.

3. Results

This section summarizes the results of water quality sampling, including groundwater sampling at Site GM1 (Section 3.1), wastewater sampling at Mill City's wastewater treatment plant (Section 3.2), PFAS sampling (Section 3.3), Santiam River sampling (Section 3.4), and seep sampling (Section 3.5). For reference purposes, summary analytical data tables presented in this TM include EPA Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs) which are typically applied to treated drinking water; however, the sampled media is not representative of treated drinking water.

3.1 Site GM1 Monitoring Well Sampling Results

A list of water quality analytes sampled at Site GM1 is provided in Table 1. Laboratory analytical reports for Site GM1 monitoring well samples are provided in Attachment A.

Site GM1 monitoring well water quality analysis results are summarized in Table 3.

3.2 Wastewater Treatment Plant Influent and Monitoring Well Sampling Results

A list of water quality analytes sampled in Mill City Wastewater Treatment Plant influent and monitoring wells is provided in Table 1. Laboratory analytical reports for wastewater influent samples are provided in Attachment A.

Wastewater influent and monitoring well water quality analysis results are summarized in Table 4.

3.3 PFAS Sampling Results

PFAS sampling locations are provided in Table 1. Laboratory analytical reports for PFAS compounds are provided in Attachment A.

Water quality results showing the results of PFAS analysis are summarized in Table 5.

3.4 Santiam River Sampling Results

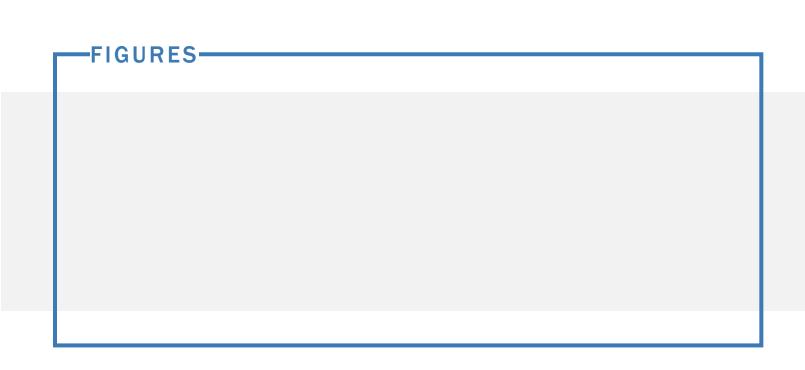
A list of water quality analytes sampled in Santiam River water downgradient of Site GM1 is provided in Table 1. Laboratory analytical reports for Santiam River water samples are provided in Attachment A.

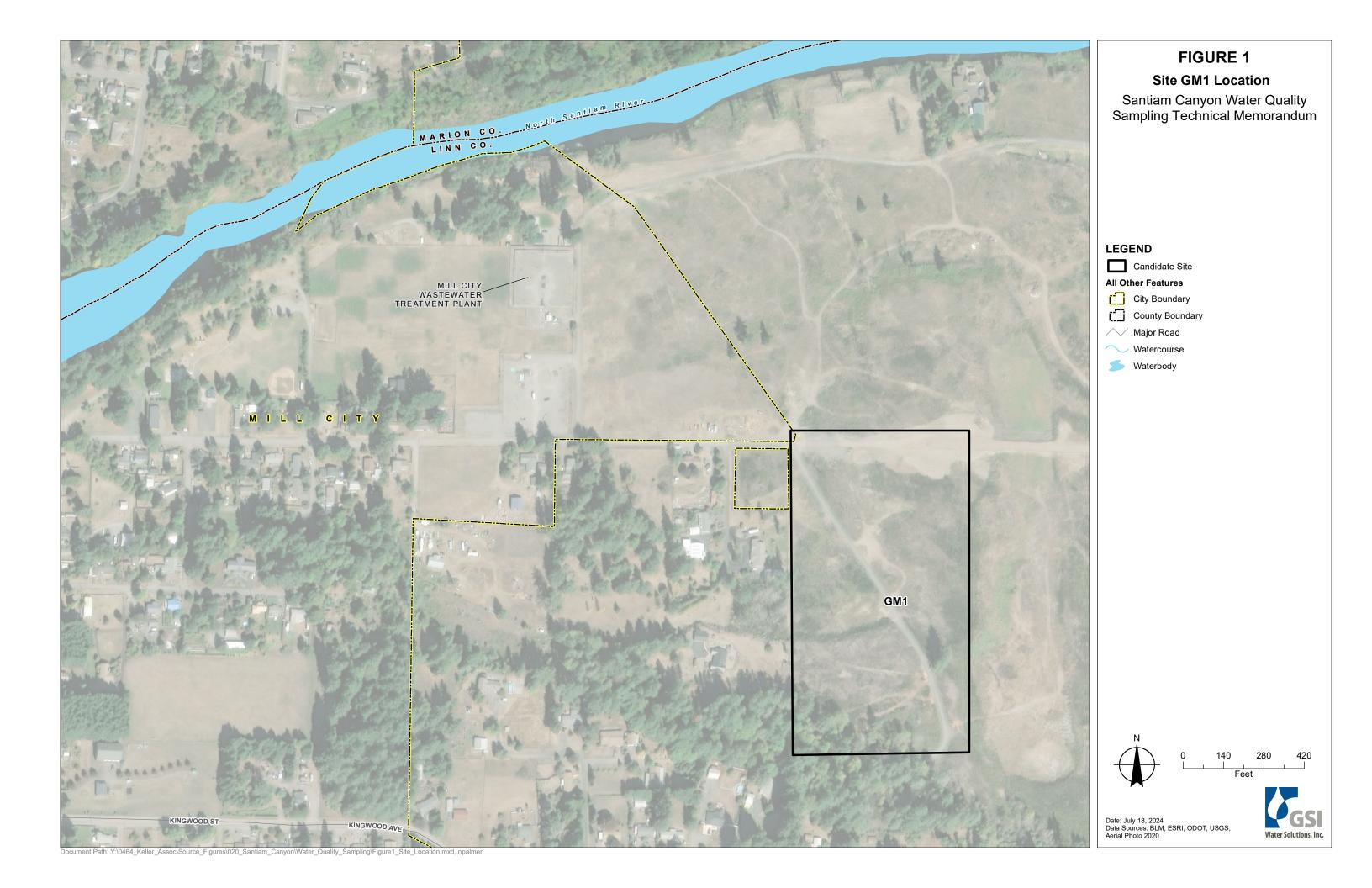
Santiam River water quality analysis results are summarized in Table 6.

3.5 Seep Sampling Results

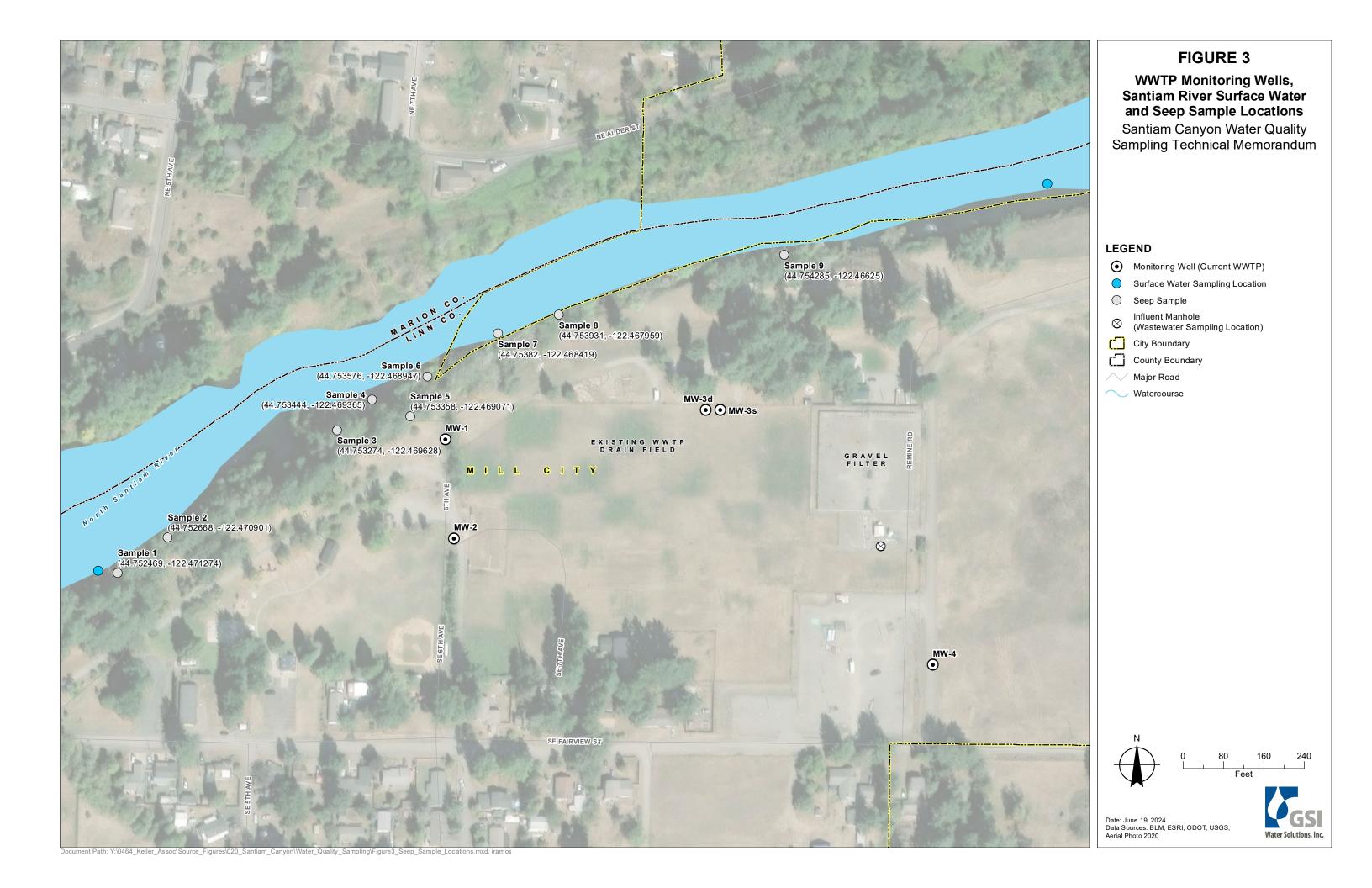
A list of water quality analytes sampled in seeps downgradient of Site GM1 are provided in Table 1. Locations and estimated discharge of seeps sampled are provided in Table 2. Laboratory analytical reports for seep samples are provided in Attachment A.

Seep sample water quality analysis results are summarized in Table 7.


4. References


Puls, R. W. and Barcelona, M. J. (1996). *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. EPA Groundwater Issue EPA/540/S-95/504. U.S. Environmental Protection Agency. Available Online: https://www.epa.gov/sites/default/files/2015-06/documents/lwflw2a.pdf

GSI Water Solutions, Inc., and GeoSystems Analysis, Inc. (2023a). Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan.


GSI Water Solutions, Inc., and GeoSystems Analysis, Inc. (2023b). Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan Addendum No. 1 (Phase III).

GSI Water Solutions, Inc. (2024). Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan Addendum No. 4 (Supplemental Characterization).

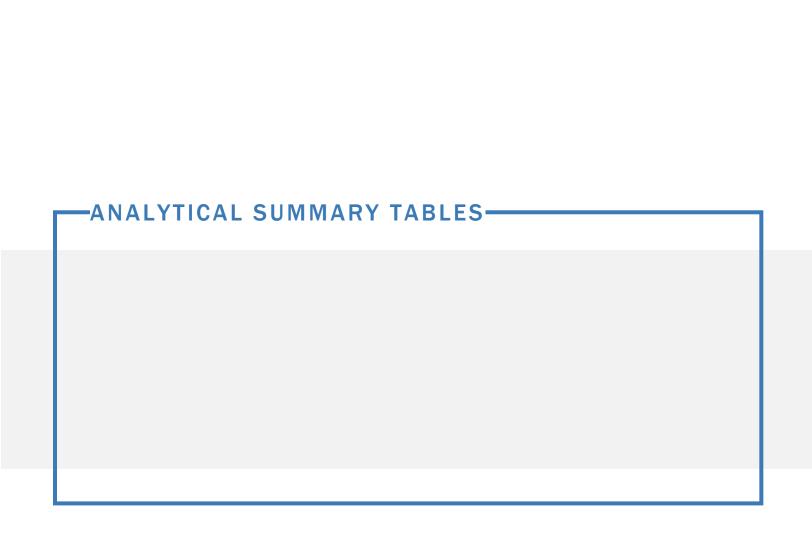


Table 3
Water Quality Laboratory Analytical Results - Site GM1 Monitoring Wells

Sample Location	Sample Date	Lab Report ID	Lab
	2/23/2024	A4B1471 - 02 26 24 2033	Apex Laboratories
GM1-MW1	7/25/2023	23-22395	Edge Analytical
	5/28/2023	23-15512	Edge Analytical
GM1-MW2	4/5/2024	A4D1585 - 05 14 24 1516	Apex Laboratories
GM1-MW4	4/5/2024	A4D1585 - 05 14 24 1516	Apex Laboratories
GM1-MW4	5/29/2023	23-15516	Edge Analytical
GM1-MW5	5/30/2023	23-15521	Edge Analytical

Sample Date:	5/28/202	23	7/25/2023		2/23/202	24	4/25/20	24	6/20/20	024	6/20/202	24	5/29/202	23	4/25/2024		5/30/2023	3					
Sample ID:	GM1-MW1		GM1-MW1		GM1-MW1		GM1-MW2		GM1-MW2		GM1-MW3		GM1-MW4		GM1-MW4		GM1-MW5					Reporting Limit	
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Standard	Criteria	Unit		Method Reference
										Volitile	Organic Compou	ınds											
Acetone							ND				- · g				ND					_	ug/L	20	EPA 8260D
Acrylonitrile							ND								ND				_	-	ug/L	2	EPA 8260D
Benzene	ND		ND				ND						ND		ND		ND		5	MCL	ug/L	0.5 ⁺	EPA 8260D
Bromobenzene							ND								ND					-	ug/L	0.5	EPA 8260D
Bromochloromethane							ND								ND					-	ug/L	1	EPA 8260D
Bromodichloromethane							ND								ND				-	-	ug/L	1	EPA 8260D
Bromoform							ND								ND				-	-	ug/L	1	EPA 8260D
Bromomethane							ND								ND				-	-	ug/L	5	EPA 8260D
2-Butanone (MEK)							ND								ND				-	-	ug/L	10	EPA 8260D
n-Butylbenzene							ND								ND				-	-	ug/L	1	EPA 8260D
sec-Butylbenzene							ND								ND				-	-	ug/L	1	EPA 8260D
tert-Butylbenzene							ND								ND				-	-	ug/L	1	EPA 8260D
Carbon disulfide							ND								ND				-	-	ug/L	10	EPA 8260D
Carbon tetrachloride	ND		ND				ND						ND		ND		ND		5	MCL	ug/L	1+	EPA 8260D/ EPA 524.2
Chlorobenzene	ND		ND				ND						ND		ND		ND		100	MCL	ug/L	0.5	EPA 8260D/ EPA 524.2
Chloroethane							ND								ND					-	ug/L	5	EPA 8260D
Chloroform							ND								ND					-	ug/L	1	EPA 8260D
Chloromethane							ND								ND					-	ug/L	5	EPA 8260D
2-Chlorotoluene							ND								ND					-	ug/L	1	EPA 8260D
4-Chlorotoluene							ND								ND					-	ug/L	1	EPA 8260D
Dibromochloromethane							ND								ND					-	ug/L	1	EPA 8260D
1,2-Dibromo-3-chloropropane							ND								ND					-	ug/L	5	EPA 8260D
1,2-Dibromoethane (EDB)							ND								ND				-	-	ug/L	0.5	EPA 8260D
Dibromomethane							ND								ND				-	-	ug/L	1	EPA 8260D
O-Dichlorobenzene			ND										ND				ND		600	MCL	ug/L	0.5	EPA 524.2
P-Dichlorobenzene			ND										ND				ND		75	MCL	ug/L	0.5	EPA 524.2
1,2-Dichlorobenzene							ND								ND				600	MCL	ug/L	0.5	EPA 8260D
1,3-Dichlorobenzene							ND								ND					-	ug/L	0.5	EPA 8260D
1,4-Dichlorobenzene							ND								ND				75	MCL	ug/L	0.5	EPA 8260D
Dichlorodifluoromethane							ND								ND					-	ug/L	1	EPA 8260D
1,1-Dichloroethane							ND								ND					-	ug/L	0.4	EPA 8260D
1,2-Dichloroethane (EDC)			ND				ND						ND		ND		ND		5	MCL	ug/L	0.5 ⁺	EPA 8260D/ EPA 524.2
1,1-Dichloroethylene			ND										ND				ND		70	MCL	ug/L	0.5	EPA 524.2
1,1-Dichloroethene							ND								ND					-	ug/L	0.4	EPA 8260D
trans-1,2-Dichloroethylene			ND										ND				ND		100	MCL	ug/L	0.5	EPA 524.2
cis-1,2-Dichloroethylene	ND		ND	-									ND				ND		70	MCL	ug/L	0.5	EPA 524.2
cis-1,2-Dichloroethene							ND								ND				-	-	ug/L	0.4	EPA 8260D
trans-1,2-Dichloroethene			No				ND						115		ND		NE		-	-	ug/L	0.4	EPA 8260D
1,2-Dichloropropane			ND				ND						ND		ND		ND		5	MCL	ug/L	0.5	EPA 8260D/ EPA 524.2
1,3-Dichloropropane							ND								ND				-	-	ug/L	1	EPA 8260D
2,2-Dichloropropane							ND								ND				-	-	ug/L	1	EPA 8260D
1,1-Dichloropropene							ND								ND				-	-	ug/L	1	EPA 8260D

Sample Date:	5/28/202	3	7/25/2023		2/23/20	24	4/25/20	24	6/20/20)24	6/20/202	24	5/29/202	3	4/25/2024		5/30/20	23	ı				
Sample ID:	GM1-MW1	0	GM1-MW1	0	GM1-MW1	0	GM1-MW2	0	GM1-MW2	0	GM1-MW3	0	GM1-MW4	0	GM1-MW4	0	GM1-MW5	0	Standard	Criteria	Unit	Reporting Limit	Method Reference
Analyte	Result	١٧	Result	Y	Result	Ų	Result	Ý	Result	٧	Result	Y	Result	Ý	Result	Ą	Result	٧	Standard	Gilleria			
cis-1,3-Dichloropropene							ND								ND				-	-	ug/L	1	EPA 8260D
trans-1,3-Dichloropropene							ND								ND				-	-	ug/L	1	EPA 8260D
Ethylbenzene	ND		ND				ND						ND		ND		ND		700	MCL	ug/L	0.5	EPA 8260D/ EPA 524.2
Hexachlorobutadiene 2-Hexanone							ND ND								ND ND				-	-	ug/L	5	EPA 8260D EPA 8260D
Isopropylbenzene							ND ND								ND				-	-	ug/L ug/L	10	EPA 8260D
4-Isopropyltoluene							ND								ND				_	_	ug/L	1	EPA 8260D
Methylene chloride	ND		ND				ND						ND		ND		ND		_	_	ug/L	10 ⁺	EPA 8260D/ EPA 524.2
4-Methyl-2-pentanone (MiBK)	113						ND						5		ND				_	-	ug/L	10	EPA 8260D
Methyl tert-butyl ether (MTBE)							ND								ND				_	_	ug/L	1	EPA 8260D
Naphthalene							ND								ND				-	-	ug/L	5	EPA 8260D
n-Propylbenzene							ND								ND				-	-	ug/L	0.5	EPA 8260D
Styrene	ND		ND				ND						ND		ND		ND		100	MCL	ug/L	1+	EPA 8260D/ EPA 524.2
1,1,1,2-Tetrachloroethane							ND								ND				-	-	ug/L	0.4	EPA 8260D
1,1,2,2-Tetrachloroethane							ND								ND				-	-	ug/L	0.5	EPA 8260D
Tetrachloroethene (PCE)			ND				ND						ND		ND		ND		5	MCL	ug/L	0.5 ⁺	EPA 8260D/ EPA 524.2
Toluene			ND				ND						ND		ND		ND		1000	MCL	ug/L	1+	EPA 8260D/ EPA 524.2
1,2,3-Trichlorobenzene							ND								ND				-	-	ug/L	2	EPA 8260D
1,2,4-Trichlorobenzene	ND		ND				ND						ND		ND		ND		70	MCL	ug/L	2+	EPA 8260D/ EPA 524.2
1,1,1-Trichloroethane	ND		ND				ND						ND		ND		ND		200	MCL	ug/L	0.5	EPA 8260D/ EPA 524.2
1,1,2-Trichloroethane	ND		ND				ND						ND		ND		ND		5	MCL	ug/L	0.5	EPA524.2
Trichloroethene (TCE)							ND								ND				5	MCL	ug/L	0.4	EPA 8260D
Trichloroethylene	ND		ND										ND				ND		5	MCL	ug/L	0.5	EPA524.2
Trichlorofluoromethane							ND								ND				-	-	ug/L	2	EPA 8260D
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene							ND								ND ND				-	-	ug/L	1	EPA 8260D EPA 8260D
1,2,4-inmethylbenzene							ND ND								ND				-	-	ug/L	1	EPA 8260D
Vinyl chloride	ND		ND				ND						ND		ND		ND		2	MCL	ug/L ug/L	0.5*	EPA 8260D/ EPA 524.2
Total Xylenes	ND		ND				ND						ND ND		ND		ND			IVICL	ug/L	0.5	EPA524.2
m,p-Xylene			110				ND						ND		ND		110		_	_	ug/L	1	EPA 8260D
o-Xylene							ND								ND				10000	MCL	ug/L	0.5	EPA 8260D
									S	emivolat	le Organic Comp	oounds									<u> </u>		
Acenaphthene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Acenaphthylene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Anthracene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Benz(a)anthracene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Benzo(a)pyrene							ND								ND					-	ug/L	0.0294	EPA 8270E
Benzo(b)fluoranthene							ND								ND				-	-	ug/L	0.0294	EPA 8270E
Benzo(k)fluoranthene							ND								ND				-	-	ug/L	0.0294	EPA 8270E
Benzo(g,h,i)perylene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Chrysene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Dibenz(a,h)anthracene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Fluoranthene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Fluorene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene							ND ND	Q-30							ND ND	0.20			-	-	ug/L	0.0196 0.0392	EPA 8270E EPA 8270E
2-Methylnaphthalene							ND								ND	Q-30 Q-30			-	-	ug/L	0.0392	EPA 8270E
2-wetnymaphthalene Naphthalene							ND	Q-30 Q-30							ND	Q-30 Q-30			-	-	ug/L	0.0392	EPA 8270E
Phenanthrene							ND	Q-30							ND	Q-30			-	-	ug/L ug/L	0.0392	EPA 8270E
Pyrene							ND								ND				-	-	ug/L	0.0196	EPA 8270E
Carbazole		 					ND								ND			-	_	_	ug/L ug/L	0.0294	EPA 8270E
Dibenzofuran							ND								ND				-	-	ug/L	0.0196	EPA 8270E
2-Chlorophenol							ND								ND				-	-	ug/L	0.098	EPA 8270E
4-Chloro-3-methylphenol							ND								ND				-	-	ug/L	0.196	EPA 8270E
2,4-Dichlorophenol							ND								ND				-	-	ug/L	0.098	EPA 8270E
2,4-Dimethylphenol							ND								ND				-	-	ug/L	0.49	EPA 8270E
2,4-Dinitrophenol							ND								ND				-	-	ug/L	0.49	EPA 8270E
4,6-Dinitro-2-methylphenol							ND								ND				-	-	ug/L	0.49	EPA 8270E
																		*			_	1	

Sample Date:	5/28/2023	3	7/25/2023		2/23/	2024	4/25/20)24	6/20/20)24	6/20/202	24	5/29/202	23	4/25/2024		5/30/2023					
Sample ID:	GM1-MW1		GM1-MW1		GM1-MW		GM1-MW2		GM1-MW2		GM1-MW3		GM1-MW4		GM1-MW4		GM1-MW5	Out	0.31	11.5	Reporting Limit	Mathed 8-6
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Standard	Criteria	Unit		Method Reference
2-Methylphenol							ND	İ							ND			-	-	ug/L	0.049	EPA 8270E
3+4-Methylphenol(s)							ND								ND			-	-	ug/L	0.049	EPA 8270E
2-Nitrophenol							ND								ND			-	-	ug/L	0.196	EPA 8270E
4-Nitrophenol							ND								ND			-	-	ug/L	0.196	EPA 8270E
Pentachlorophenol (PCP)							ND								ND			-	-	ug/L	0.196	EPA 8270E
Phenol							ND								ND			-	-	ug/L	0.392	EPA 8270E
2,3,4,6-Tetrachlorophenol							ND								ND			-	-	ug/L	0.098	EPA 8270E
2,3,5,6-Tetrachlorophenol							ND								ND			-	-	ug/L	0.098	EPA 8270E
2,4,5-Trichlorophenol							ND								ND			-	-	ug/L	0.098	EPA 8270E
2,4,6-Trichlorophenol							ND								ND			-	-	ug/L	0.098	EPA 8270E
Bis(2-ethylhexyl)phthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
Butyl benzyl phthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
Diethylphthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
Dimethylphthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
Di-n-butylphthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
Di-n-octyl phthalate							ND								ND			-	-	ug/L	0.392	EPA 8270E
N-Nitrosodimethylamine							ND								ND			-	-	ug/L	0.049	EPA 8270E
N-Nitroso-di-n-propylamine							ND	R-02							ND	R-02		-	-	ug/L	0.049	EPA 8270E
N-Nitrosodiphenylamine							ND								ND			-	-	ug/L	0.049	EPA 8270E
Bis(2-Chloroethoxy) methane							ND								ND			-	-	ug/L	0.049	EPA 8270E
Bis(2-Chloroethyl) ether							ND								ND			-	-	ug/L	0.049	EPA 8270E
2,2'-Oxybis(1-Chloropropane)							ND								ND			-	-	ug/L	0.049	EPA 8270E
Hexachlorobenzene							ND								ND			-	-	ug/L	0.0196	EPA 8270E
Hexachlorobutadiene							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
Hexachlorocyclopentadiene							ND								ND			-	-	ug/L	0.098	EPA 8270E
Hexachloroethane							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
2-Chloronaphthalene							ND	Q-30							ND	Q-30		-	-	ug/L	0.0196	EPA 8270E
1,2,4-Trichlorobenzene							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
4-Bromophenyl phenyl ether							ND								ND			-	-	ug/L	0.049	EPA 8270E
4-Chlorophenyl phenyl ether							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
Aniline							ND								ND			-	-	ug/L	0.098	EPA 8270E
4-Chloroaniline							ND								ND			-	-	ug/L	0.049	EPA 8270E
2-Nitroaniline							ND								ND			-	-	ug/L	0.392	EPA 8270E
3-Nitroaniline							ND								ND			-	-	ug/L	0.392	EPA 8270E
4-Nitroaniline							ND								ND			-	-	ug/L	0.392	EPA 8270E
Nitrobenzene							ND								ND			-	-	ug/L	0.196	EPA 8270E
2,4-Dinitrotoluene							ND								ND			-	-	ug/L	0.196	EPA 8270E
2,6-Dinitrotoluene							ND								ND			-	-	ug/L	0.196	EPA 8270E
Benzoic acid							ND								ND			-	-	ug/L	2.45	EPA 8270E
Benzyl alcohol							ND								ND			_	-	ug/L	0.196	EPA 8270E
Isophorone							ND								ND			-	-	ug/L	0.049	EPA 8270E
Azobenzene (1,2-DPH)							ND								ND			-	-	ug/L	0.049	EPA 8270E
Bis(2-Ethylhexyl) adipate							ND								ND			-	-	ug/L	0.49	EPA 8270E
3,3'-Dichlorobenzidine							ND	Q-52							ND	Q-52		-	-	ug/L	0.98	EPA 8270E
1,2-Dinitrobenzene							ND								ND			-	-	ug/L	0.49	EPA 8270E
1,3-Dinitrobenzene							ND								ND			-	-	ug/L	0.49	EPA 8270E
1,4-Dinitrobenzene							ND								ND			-	-	ug/L	0.49	EPA 8270E
Pyridine							ND								ND			-	-	ug/L	0.196	EPA 8270E
1,2-Dichlorobenzene							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
1,3-Dichlorobenzene							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E
1,4-Dichlorobenzene							ND	Q-30							ND	Q-30		-	-	ug/L	0.049	EPA 8270E

Sample Date:	5/28/202	2	7/25/2023		2/23/20	24	4/25/20	24	6/20/20	124	6/20/202	04	5/29/2023		4/25/2024		5/30/202	13					
Sample ID:	GM1-MW1	i l			GM1-MW1	<u> </u>	GM1-MW2		GM1-MW2		GM1-MW3	- T		_	GM1-MW4		GM1-MW5	.5				Reporting Limit	
	Result	Q	GM1-MW1 Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	GM1-MW4 Result	Q	Result	Q	Result	Q	Standard	Criteria	Unit	reporting Limit	Method Reference
Analyte	riodaic		Result		. issuit				Hoodic				Result				Hoodic						
										Synthet	ic Organic Chem	icals											
2,4 - D													ND				ND		70	MCL	ug/L	0.1	EPA 515.4
2,4,5 - Tp (Silvex)													ND				ND		50	MCL	ug/L	0.1	EPA 515.4
Di(2-Ethylhexyl)-Adipate													ND				ND		400	MCL	ug/L	0.05	EPA 525.2
Alachlor													ND				ND		2	MCL	ug/L	0.05	EPA 525.2
Atrazine													ND				ND		3	MCL	ug/L	0.05	EPA 525.2
Benzo(A)Pyrene													ND				ND		0.2	MCL	ug/L	0.05	EPA 525.2
Lindane (Bhc - Gamma)	ND												ND				ND		0.2	MCL	ug/L	0.05	EPA 525.2
Carbofuran	ND												ND				ND		40	MCL	ug/L	1	EPA 531.2
Chlordane	ND												ND				ND		2	MCL	ug/L	0.1	EPA 508.1
Dalapon	ND												ND				ND		200	MCL	ug/L	0.5	EPA 515.4
1,2-Dibromo-3-Chloropropane	ND												ND				ND		0.2	MCL	ug/L	0.02	EPA 504.1
Dinoseb	ND												ND				ND		7	MCL	ug/L	0.1	EPA 515.4
Diquat	ND												ND				ND		20	MCL	ug/L	0.4	EPA 549.2
Endothall	ND												ND				ND		100	MCL	ug/L	5	EPA 548.1
Endrin	ND												ND				ND		2	MCL	ug/L	0.05	EPA 525.2
1,2 - Dibromoethane (EDB)	ND												ND				ND		0.05	MCL	ug/L	0.02	EPA 504.1
Glyphosate	ND												ND				ND		700	MCL	ug/L	5	EPA 547
Heptachlor Epoxide "B"	ND												ND				ND		0.2	MCL	ug/L	0.05	EPA 525.2
Heptachlor	ND												ND				ND		0.4	MCL	ug/L	0.05	EPA 525.2
Hexachlorobenzene	ND												ND				ND		1	MCL	ug/L	0.05	EPA 525.2
Hexachlorocyclo-Pentadiene	ND												ND				ND		50	MCL	ug/L	0.05	EPA 525.2
Methoxychlor													ND				ND		40	MCL	ug/L	0.05	EPA 525.2
Pentachlorophenol	ND												ND				ND		1	MCL	ug/L	0.04	EPA 515.4
Di(2-Ethylhexyl)-Phthalate													ND				ND		6	MCL	ug/L	0.1	EPA 525.2
Picloram													ND				ND		500	MCL	ug/L	0.1	EPA 515.4
Simazine													ND				ND		4	MCL	ug/L	0.05	EPA 525.2
Toxaphene													ND				ND		3	MCL	ug/L	1	EPA 508.1
Oxamyl (Vydate)													ND				ND		200	MCL	ug/L	1	EPA 531.2
Pcbs (Total Aroclors)				_									ND				ND	_	0.5	MCL	ug/L	0.2	EPA 508.1
1 555 (1541711661616)	113										Total Metals		1.15						0.0			0.2	2.71000.1
Aluminum	520			1			ND				rotal metals				139		2260		50-200	SMCL	ug/L	50 ⁺	EPA 6020B
Antimony	ND			_			ND								ND		ND	_	6	MCL	ug/L	1	EPA 6020B
Arsenic							ND								ND		0.95		10	MCL	ug/L	1	EPA 6020B
Barium				_			2.13								2.98		12	_	2000	MCL	ug/L	2	EPA 6020B
Beryllium				_			ND						ND		ND		ND	_	4	MCL	ug/L	0.2	EPA 6020B/ EPA200.8
Cadmium				_			ND						ND		ND		ND	_	5	MCL		0.2	EPA 6020B
Chromium	ND ND						ND						1.9		ND		3.2		100	MCL	ug/L		EPA 6020B
													1.9		ND		14.2				ug/L	2 ⁺	
Copper							ND												1300	π	ug/L		EPA 6020B
Lead		B 00					ND	B 00							1.79	B 00	0.6	-	15	TT	ug/L	0.2 150	EPA 6020B
Magnesium		B-02		-			6720	B-02							6460 40.3	B-02	3300			- SMCL	ug/L		EPA 6020B EPA 6020B
Manganese		+					8.31										106		50		ug/L	1	
Melvindenum		+					ND								ND		ND		2	MCL	ug/L	0.08	EPA 6020B
Molybdenum		D.CC		-			ND	D.CC				\vdash			ND	D.CC	ND 0.0		-	-	ug/L	1	EPA 6020B
Nickel		B-02					ND 1300	B-02							ND 1000	B-02	2.8		-	-	ug/L	2	EPA 6020B
Potassium		-		-			1380					\vdash			1660		1000			-	ug/L	100	EPA 6020B
Selenium							ND							_	ND		ND		50	MCL	ug/L	1	EPA 6020B
Silver		\vdash					ND 5.400								ND		ND		100	SMCL	ug/L	0.2	EPA 6020B
Sodium	3800	-		-			5480								5500		4800		-	-	ug/L	100	EPA 6020B
Thallium		\vdash					ND								ND		ND		2	MCL	ug/L	0.2	EPA 6020B
Boron		\vdash					ND								ND		0		-	-	ug/L	10	EPA 6020B
Lithium		\vdash					ND	R-04							ND	R-04	0		-	-	ug/L	5	EPA 6020B
Strontium							93.4	B-02							86.4	B-02	0		-	-	ug/L	5	EPA 6020B
Vanadium							2.09								3.56		0			-	ug/L	2	EPA 6020B
Zinc							ND								ND		5.9		5000	SMCL	ug/L	4	EPA 6020B
Calcium							17700								15400		9100			-	ug/L	600	EPA 6020B
Iron																	2610		300	SMCL	ug/L	50	EPA 200.7
Silica																	43300		-	-	ug/L	50	EPA 200.7
Chloride	1400																1400		250	SMCL	ug/L	200	EPA 300

Sample Date:	5/28/202	3	7/25/2023		2/23/20	24	4/25/20	24	6/20/20	24	6/20/2024		5/29/202	23	4/25/2024		5/30/20	23					
Sample ID:	GM1-MW1		GM1-MW1		GM1-MW1		GM1-MW2		GM1-MW2		GM1-MW3		GM1-MW4		GM1-MW4		GM1-MW5					Reporting Limit	
Analyte	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Standard	Criteria	Unit		Method Reference
									Ammonia (NH3	B) by Gas	S Diffusion and Cold	ormetr	ric Detection										
Ammonia as N							ND								ND				-	-	mg/L	0.02	SM 4500-NH3 G
										Anoins t	y Ion Chromatogra	phy											
Bromide							ND								ND				-	-	mg/L	1	EPA 300.0
Chloride							1.92								1.84				250	SMCL	mg/L	1	EPA 300.0
Fluoride							ND								ND		ND		2	SMCL	mg/L	1	EPA 300.0
Nitrate-Nitrogen	1.1	НЗ			0.843		0.308								0.699		0.46		10	MCL	mg/L	0.25	EPA 300.0
Nitrite-Nitrogen	ND	H4					ND								ND		ND		1	MCL	mg/L	0.25	EPA 300.0
Sulfate	1.6						2.05								2.06		0.3		250	SMCL	mg/L	1	EPA 300.0
								Tota	l Cyanide by UV	Digesti	on/Gas Diffusion/A	mpero	ometric Detectio	on									
Total Cyanide	ND						ND						ND		ND				0.2	MCL	mg/L	0.005	D7511-12
								Total F	hosphorus by F	ersulfat	e Digestion/Colorin	netric	Spectrophotom	etry									
Phosphorus							ND								ND				-	-	mg/L	0.2	SM 4500-P E
									So	lid and	Moisture Determina	ations											
Total Dissolved Solids	78						110						147		115		84		500	SMCL	mg/L	10 ⁺	SM 2540 C
										General	Chemistry Paramet	ters											
рН	6.15 H5	H-12					7.1	H-12					7.15	Н5	7.3	H-12	7.05	Н5	6.5-8.5	SMCL	pH Units		SM 4500-H+ B
pH Temperature (deg C)							21.6	H-12							21.6	H-12			-	-	pH Units		SM 4500-H+ B
Conductivity							157								145				-	-	umhos/cm**	250	SM 2510 B
Total Alkalinity	42.5						76.6						114		69		41.4		-	-	mg CaCO3/L	20 ⁺	SM 2510 B
Bicarbonate Alkalinity	42.5						76.6						114		69		41.4		-	-	mg CaCO3/L	20 ⁺	SM 2510 B
Carbonate Alkalinity	ND						ND						ND		ND		ND		-	-	mg CaCO3/L	20 ⁺	SM 2510 B
Hydroxide Alkalinity	ND						ND						ND		ND		ND		-	-	mg CaCO3/L	20 ⁺	SM 2510 B
Total Suspended Solids	11.5 NN																71 NN		-	-	mg/L	2	EPA I-3765-85
Hardness	39.4																36.3		-	-	mg CaCO3/L		EPA 200.7
Corrosivity	-2.92												-1.25						-	-	si		SM4500-H+ B
											Radionuclides												
Uranium	ND												ND				ND		30	-	ug/L	1	EPA 200.8
Gross Alpha	ND												ND				ND		15	-	pCi/L	3	EPA 900.0
Gross Beta	ND												ND				ND		4	_	piC/L	4	EPA 900.0
Radium 226	ND												ND				ND		5***	-	pCi/L	1	EPA 903.1
Radium 228	ND												ND				ND		5***	-	pCi/L	1	EPA 904.0
										F	ield Parameters												
Temperature	11.7						11.2		14.4		13.7				10.5						°C		Field Instrument
Specific Conductivity	93.3						255.0		134.1		121.3				252.0						uS/cm		Field Instrument
Dissolved Oxygen	6.0						3.5		1.1		9.4				3.3						mg/L		Field Instrument
pH (field)	6.52						6.47		6.92		7.02				6.25						pH Units		Field Instrument
Oxidation-Reduction Potential	93.8						172.4		107.5		197.0				186.8						mV		Field Instrument
Turbidity	24.5						1.97		3.24		1.23				4.67						NTU		Field Instrument

Notes:

Analyte Detected Above MCL/SMCL

- MCL: Maximum Contaminant Level (the highest level of contamination that is considered acceptable in drinking water)
- SMCL Secondary Maximum Containment Level (established guidelines for drinking water aesthetic considerations; not EPA-enforced)
- TT Treatment Technique, action is required if more than 10% of tap water samples exceed this level
- ND: Analyte NOT DETECTED at or above the detection or reporting limit
- Detection Limit: Lowest concentration of an analyte that can be reliably detected
- Reporting Limit: Lowest concentration of analyte that a laboratory can report with reasonable accuracy for a specific sample
 - Q-30: Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low
 - Q-52: Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method. passed all QC requirements for this method.
 - B-02: Analyte detected in an associated blank at a level between one-half the MRL and the MRL (See Notes and Conventions below).
 - H-12: Sample Analysis or Filtration was performed >15 minutes after sample collection. Consult regulator or permit manager to determine the usability of data for intended use. usability of data for intended use
 - R-02: The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
 - R-04: Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis
 - + Actual Reporting Limit may be lower than[listed Reporting Limit-varies by laboratory.
 - * Listed under OAR 33-61-0030 Maximum Contaminant Levels and Action Levels
 - ** @ 25 deg C
 - *** MCL for Radium 226 and Radium 228 combined

Table 4
Water Quality Laboratory Analytical Results - Wastewater Treatment Plant Influent and Monitoring Wells
Gates/Mill City Water Quality Sampling and Analysis Technical Memorandum

Sample ID	Sample Date	Lab Report ID	Lab
		20230502-095	
IN 20220E02	E/2/2022	20230502-094	
IN_20230502	5/2/2023	20230502-097	Waterlab Corps
		20230502-098	
IN_20231017	10/17/2023	20231017-008 and 20231017-009	
WW-050124	5/1/2024	A4E0861 - 05 23 24 1220	Apex Laboratories

Sample Date:	5/2/2023		10/17/2023		5/1/2024		5/1/2024	5/1/2024	6/20/2024	5/1/2024	6/20/2024					
Sample ID:	IN_20230502		IN_20231017		WW-050124		MW-1	MW-2	MW-3s	MW-3d	MW-4				Reporting Limit	
Analyte	Result	Q	Result	Q	Result	Q	Result	Result	Result	Result	Result	Standard	Criteria	Units		Method Reference
							Volitile Organi	Compounds								
Acetone					304							-	-	ug/L		EPA 8260D
Acrylonitrile					ND							-	-	ug/L		EPA 8260D
Benzene					ND							5	MCL	ug/L		EPA 8260D
Bromobenzene					ND							-	-	ug/L		EPA 8260D
Bromochloromethane					ND							-	-	ug/L		EPA 8260D
Bromodichloromethane					ND							-	-	ug/L		EPA 8260D
Bromoform					ND							-	-	ug/L		EPA 8260D
Bromomethane					ND							-	-	ug/L		EPA 8260D
2-Butanone (MEK)					ND							-	-	ug/L		EPA 8260D
n-Butylbenzene					ND							-	-	ug/L		EPA 8260D
sec-Butylbenzene					ND							-	_	ug/L		EPA 8260D
tert-Butylbenzene				 	ND							_	_	ug/L		EPA 8260D
Carbon disulfide					ND							_	_	ug/L		EPA 8260D
Carbon tetrachloride					ND							5	MCL	ug/L	-	EPA 8260D
Chlorobenzene					ND							100	MCL	ug/L		EPA 8260D
Chloroethane					ND							_	-	ug/L	-	EPA 8260D
Chloroform					1.1							_	_	ug/L		EPA 8260D
Chloromethane					ND							_	_	ug/L		EPA 8260D
2-Chlorotoluene					ND							_	_	ug/L		EPA 8260D
4-Chlorotoluene					ND							_	_	ug/L		EPA 8260D
Dibromochloromethane					ND							_	_	ug/L		EPA 8260D
1,2-Dibromoethane (EDB)					ND							_	_	ug/L		EPA 8260D
Dibromomethane					ND							_	_	ug/L		EPA 8260D
1,2-Dichlorobenzene					ND							600	MCL	ug/L ug/L	-	EPA 8260D
1,3-Dichlorobenzene					ND							-	- IVICE	ug/L ug/L		EPA 8260D
1,4-Dichlorobenzene					0.63							75	MCL	ug/L ug/L		EPA 8260D
Dichlorodifluoromethane					ND							-	- IVICE	ug/L ug/L		EPA 8260D
1,1-Dichloroethane					ND							_	_	ug/L ug/L		EPA 8260D
1,2-Dichloroethane (EDC)					ND							5	MCL	ug/L ug/L		EPA 8260D
1,1-Dichloroethene					ND									ug/L ug/L		EPA 8260D
cis-1,2-Dichloroethene				+	ND ND								-	_	-	EPA 8260D
trans-1,2-Dichloroethene				-	ND ND									ug/L ug/L	-	EPA 8260D EPA 8260D
1,2-Dichloropropane				-	ND ND							5	 MCL	_		EPA 8260D EPA 8260D
				-										ug/L	-	
1,3-Dichloropropane				-	ND ND							-	-	ug/L	-	EPA 8260D
2,2-Dichloropropane				-	ND							-	-	ug/L	-	EPA 8260D
1,1-Dichloropropene				-	ND							-	-	ug/L		EPA 8260D
cis-1,3-Dichloropropene				-	ND							-	-	ug/L		EPA 8260D
trans-1,3-Dichloropropene					ND							700	-	ug/L		EPA 8260D
Ethylbenzene					ND							700	MCL	ug/L		EPA 8260D
Hexachlorobutadiene					ND							-	-	ug/L	-	EPA 8260D
2-Hexanone					ND							-	-	ug/L		EPA 8260D
Isopropylbenzene					ND							-	-	ug/L	-	EPA 8260D
4-Isopropyltoluene					1.01							-	-	ug/L		EPA 8260D

Sample Date:	5/2/2023		10/17/2023		5/1/2024		5/1/2024	5/1/2024	6/20/2024	5/1/2024	6/20/2024					
Sample ID:	IN_20230502	Q	IN_20231017	Q	WW-050124	Q	MW-1	MW-2	MW-3s	MW-3d	MW-4	Standard	Criteria	Units	Reporting	Method Reference
Analyte	Result	, i	Result	, i	Result	Ť	Result	Result	Result	Result	Result				Limit	
Methylene chloride 4-Methyl-2-pentanone (MiBK)					ND							-		ug/L		EPA 8260D EPA 8260D
Methyl tert-butyl ether (MTBE)					ND ND							-		ug/L ug/L	-	EPA 8260D EPA 8260D
Naphthalene					ND								_	ug/L ug/L		EPA 8260D
n-Propylbenzene					ND							_	_	ug/L ug/L		EPA 8260D
Styrene					ND							100	MCL	ug/L		EPA 8260D
1,1,1,2-Tetrachloroethane					ND							-	-	ug/L		EPA 8260D
1,1,2,2-Tetrachloroethane					ND							_	-	ug/L		EPA 8260D
Tetrachloroethene (PCE)					ND							5	MCL	ug/L		EPA 8260D
Toluene					21							1000	MCL	ug/L		EPA 8260D
1,2,3-Trichlorobenzene					ND							-	-	ug/L		EPA 8260D
1,2,4-Trichlorobenzene					ND							70	MCL	ug/L		EPA 8260D
1,1,1-Trichloroethane					ND							-	-	ug/L		EPA 8260D
1,1,2-Trichloroethane					ND							-	-	ug/L	-	EPA 8260D
Trichloroethene (TCE)					ND							5	MCL	ug/L		EPA 8260D
Trichlorofluoromethane					ND							-	-	ug/L		EPA 8260D
1,2,3-Trichloropropane					ND							-		ug/L		EPA 8260D
1,2,4-Trimethylbenzene					ND							-	-	ug/L		EPA 8260D
1,3,5-Trimethylbenzene					ND							-	-	ug/L		EPA 8260D
Vinyl chloride					ND							2	MCL	ug/L		EPA 8260D
m,p-Xylene					ND							-	-	ug/L		EPA 8260D
o-Xylene					ND							10000	MCL	ug/L		EPA 8260D
1,1,1-Trichloroethane	ND	В										-	-	ug/L	0.5	EPA 524.2
1,1,2-Trichloroethane	ND	В										-	-	ug/L	0.5	EPA 524.2
1,1-Dichloroethylene	ND	В										-	-	ug/L	0.5	EPA 524.2
1,2,4-Trichlorobenzene	ND	В										-	-	ug/L	0.5	EPA 524.2
1,2-Dichloroethane	ND	В										-		ug/L	0.5	EPA 524.2
1,2-Dichloropropane	ND	В										-		ug/L	0.5	EPA 524.2
Benzene	ND	В										-	-	ug/L	0.5	EPA 524.2
Carbon Tetrachloride	ND	В										-	-	ug/L	0.5	EPA 524.2
cis-1,2-Dichloroethylene	ND	В										-	-	ug/L	0.5	EPA 524.2
Dichloromethane	ND	В										-	-	ug/L	0.5 0.5	EPA 524.2 EPA 524.2
Ethylbenzene Monochlorobenzene	ND ND	В										-	-	ug/L	0.5	EPA 524.2
o-Dichlorobenzene	ND	B B										-	-	ug/L	0.5	EPA 524.2
p-Dichlorobenzene	ND	В												ug/L ug/L	0.5	EPA 524.2
Styrene	ND	В										_	_	ug/L ug/L	0.5	EPA 524.2
Tetrachloroethylene (PCE)	ND	В										_	_	ug/L	0.5	EPA 524.2
Toluene	49.6	В										_	_	ug/L	0.5	EPA 524.2
trans-1,2-Dichloroethylene	ND	В										_	_	ug/L	0.5	EPA 524.2
Trichloroethylene (TCE)	ND	В										_	_	ug/L	0.5	EPA 524.2
Vinyl Chloride	ND	В										_	-	ug/L	0.5	EPA 524.2
Xylenes, Total	ND	В										_	-	ug/L	0.5	EPA 524.2
, a 11, 11							Semivolatile Orga	nic Compounds						3		
Acenaphthene					ND							-	-	ug/L		EPA 8270E
Acenaphthylene					ND							-	-	ug/L	-	EPA 8270E
Anthracene					ND							-	-	ug/L		EPA 8270E
Benz(a)anthracene					ND							-		ug/L		EPA 8270E
Benzo(a)pyrene					ND							-	-	ug/L		EPA 8270E
Benzo(b)fluoranthene					ND							-	-	ug/L		EPA 8270E
Benzo(k)fluoranthene					ND							-	-	ug/L		EPA 8270E
Benzo(g,h,i)perylene					ND							-	-	ug/L		EPA 8270E
Chrysene					ND							-	-	ug/L	-	EPA 8270E
Dibenz(a,h)anthracene					ND							-	-	ug/L	-	EPA 8270E
Fluoranthene					ND							-	-	ug/L		EPA 8270E
Fluorene					ND									ug/L		EPA 8270E
Indeno(1,2,3-cd)pyrene					ND							-	-	ug/L		EPA 8270E

Sample Date:	5/2/2023		10/17/2023		5/1/2024		5/1/2024	5/1/2024	6/20/2024	5/1/2024	6/20/2024					
Sample ID:	IN_20230502	Q	IN_20231017 Result	Q	WW-050124	Q	MW-1	MW-2	MW-3s	MW-3d	MW-4 Result	Standard	Criteria	Units	Reporting Limit	Method Reference
Analyte 1-Methylnaphthalene	Result		Result		Result ND	Q-30	Result	Result	Result	Result	Result			ug/l		EPA 8270E
2-Methylnaphthalene					ND ND	Q-30 Q-30						-	-	ug/L ug/L		EPA 8270E
Naphthalene					ND ND	Q-30 Q-30						_	_	ug/L ug/L		EPA 8270E
Phenanthrene					ND	Q-30						_	_	ug/L		EPA 8270E
Pyrene					ND							_	_	ug/L		EPA 8270E
Carbazole					ND							_	_	ug/L		EPA 8270E
Dibenzofuran					ND							_	_	ug/L		EPA 8270E
2-Chlorophenol					ND							_	_	ug/L		EPA 8270E
4-Chloro-3-methylphenol					ND							_	_	ug/L		EPA 8270E
2,4-Dichlorophenol					ND							_	_	ug/L		EPA 8270E
2,4-Dimethylphenol					ND							_	_	ug/L		EPA 8270E
2,4-Dinitrophenol					ND							_	_	ug/L		EPA 8270E
4,6-Dinitro-2-methylphenol					ND							_	_	ug/L		EPA 8270E
2-Methylphenol					ND							_	_	ug/L		EPA 8270E
3+4-Methylphenol(s)					180							-	-	ug/L		EPA 8270E
2-Nitrophenol					ND							-	-	ug/L	-	EPA 8270E
4-Nitrophenol					ND							-	-	ug/L		EPA 8270E
Pentachlorophenol (PCP)					ND							-	-	ug/L	-	EPA 8270E
Phenol					26.8							-		ug/L		EPA 8270E
2,3,4,6-Tetrachlorophenol					ND							-		ug/L		EPA 8270E
2,3,5,6-Tetrachlorophenol					ND							-		ug/L		EPA 8270E
2,4,5-Trichlorophenol					ND							-	-	ug/L	-	EPA 8270E
2,4,6-Trichlorophenol					ND							-	-	ug/L		EPA 8270E
Bis(2-ethylhexyl)phthalate					ND							-	-	ug/L		EPA 8270E
Butyl benzyl phthalate					ND							-		ug/L		EPA 8270E
Diethylphthalate					ND							-	-	ug/L		EPA 8270E
Dimethylphthalate					ND							-	-	ug/L		EPA 8270E
Di-n-butylphthalate					ND							-	-	ug/L		EPA 8270E
Di-n-octyl phthalate					ND							-	-	ug/L		EPA 8270E
N-Nitrosodimethylamine					ND							-	-	ug/L		EPA 8270E
N-Nitroso-di-n-propylamine					ND	R-02						-	-	ug/L		EPA 8270E
N-Nitrosodiphenylamine					ND							-	-	ug/L		EPA 8270E
Bis(2-Chloroethoxy) methane					ND							-	-	ug/L		EPA 8270E
Bis(2-Chloroethyl) ether					ND							-	-	ug/L		EPA 8270E
2,2'-Oxybis(1-Chloropropane)					ND							-	-	ug/L		EPA 8270E
Hexachlorobenzene					ND							-	-	ug/L		EPA 8270E
Hexachlorobutadiene					ND	Q-30						-		ug/L		EPA 8270E
Hexachlorocyclopentadiene					ND							-	-	ug/L		EPA 8270E
Hexachloroethane					ND	Q-30						-	-	ug/L		EPA 8270E
2-Chloronaphthalene					ND	Q-30						-	-	ug/L		EPA 8270E
1,2,4-Trichlorobenzene					ND	Q-30						-	-	ug/L		EPA 8270E
4-Bromophenyl phenyl ether					ND							-	-	ug/L		EPA 8270E
4-Chlorophenyl phenyl ether					ND	Q-30						-	-	ug/L	-	EPA 8270E
Aniline					ND							-	-	ug/L		EPA 8270E
4-Chloroaniline					ND							-	-	ug/L		EPA 8270E
2-Nitroaniline					ND							-	-	ug/L		EPA 8270E
3-Nitroaniline					ND							-	-	ug/L	-	EPA 8270E
4-Nitroaniline					ND							-	-	ug/L	-	EPA 8270E
Nitrobenzene					ND							-	-	ug/L		EPA 8270E
2,4-Dinitrotoluene					ND							-	-	ug/L		EPA 8270E
2,6-Dinitrotoluene					ND							-	-	ug/L		EPA 8270E
Benzoic acid					117							-	-	ug/L		EPA 8270E
Benzyl alcohol					ND							-	-	ug/L		EPA 8270E
Isophorone					ND							-	-	ug/L		EPA 8270E
Azobenzene (1,2-DPH)					ND							-	-	ug/L		EPA 8270E
Bis(2-Ethylhexyl) adipate					ND							-	-	ug/L		EPA 8270E
3,3'-Dichlorobenzidine					ND	Q-52						-	-	ug/L		EPA 8270E

Sample Date:	5/2/2023		10/17/2023		5/1/2024		5/1/2024	5/1/2024	6/20/2024	5/1/2024	6/20/2024					
Sample ID:	IN_20230502		IN_20231017		WW-050124		MW-1	MW-2	MW-3s	MW-3d	MW-4				Reporting	
Analyte	Result	Q	Result	Q	Result	Q	Result	Result	Result	Result	Result	Standard	Criteria	Units	Limit	Method Reference
1,2-Dinitrobenzene					ND							-	-	ug/L		EPA 8270E
1,3-Dinitrobenzene					ND							-	-	ug/L		EPA 8270E
1,4-Dinitrobenzene					ND							-	-	ug/L		EPA 8270E
Pyridine					ND							-	-	ug/L		EPA 8270E
1,2-Dichlorobenzene					ND	Q-30						-		ug/L		EPA 8270E
1,3-Dichlorobenzene					ND	Q-30						-		ug/L		EPA 8270E
1,4-Dichlorobenzene					ND	Q-30						-	-	ug/L		EPA 8270E
							Synthetic Organ	nic Chemicals			•					
1,2-Dibromo-3-chloropropane	ND	В										-	-	ug/L	0	EPA 504.1
Ethylene Dibromide	ND	В										-	-	ug/L	0	EPA 504.1
Chlordane	ND	В										-	-	ug/L	0.2	EPA 508
Endrin	ND	В										-	-	ug/L	0.01	EPA 508
BHC-Gamma Lindane	ND	В										-	-	ug/L	0.01	EPA 508
Heptachlor	ND	В										-	-	ug/L	0.01	EPA 508
Heptachlor Epoxide	ND	В										-	-	ug/L	0.01	EPA 508
Methoxychlor	ND	В										-		ug/L	0.01	EPA 508
Polychlorinated Biphenyls	ND	В										-		ug/L	0.2	EPA 508
Toxaphene	ND	В										-		ug/L	0.3	EPA 508
2,4,5-TP Silvex	ND	В										-		ug/L	5	EPA 515.3
Dalapon	ND	В										-		ug/L	5	EPA 515.3
Dinoseb	ND	В										-		ug/L	1	EPA 515.3
Pentachlorophenol	ND	В										-		ug/L	0.5	EPA 515.3
Picloram	ND	В										-	-	ug/L	5	EPA 515.3
Alachlor	ND	В										-		ug/L	0.2	EPA 525.2
Atrazine	ND	В										-	-	ug/L	0.3	EPA 525.2
Benzo(a)pyrene	ND	В										-	-	ug/L	0.1	EPA 525.2
Bis(2-ethylhexyl)phthalate	9.01	В										-	-	ug/L	2	EPA 525.2
Bis(2-ethylhexyl)adipate	ND	В										-	-	ug/L	4	EPA 525.2
Hexachlorobenzene	ND	В										-		ug/L	0.3	EPA 525.2
Hexachlorocyclopentadiene	ND	В										-	-	ug/L	5	EPA 525.2
Simazine	ND	В										-		ug/L	0.4	EPA 525.2
Carbofuran	ND	В										-		ug/L	4	EPA 531.2
Vydate	ND	В										-	-	ug/L	4	EPA 531.2
Endothall	ND	В										-		ug/L	10	EPA 548.1
Diquat	ND	В										-	-	ug/L	10	EPA 549.2
2,4-D	ND	В										-	-	ug/L	2	EPA 515.3
Glyphosate	ND	В										-		ug/L	50	EPA 547
			·				Total M	letals								
Aluminum	275				189							50-200	MCL	ug/L	50	EPA 6020B/SM3113B
Antimony	ND				ND							6	MCL	ug/L	5	EPA 6020B/SM3113B
Arsenic	ND				1.02							10	MCL	ug/L	2	EPA 6020B/SM3113B
Barium	10.9	В			9.83	В						2000	MCL	ug/L	0.5	EPA 6020B/SM3113B
Beryllium	ND				ND							4	MCL	ug/L	1	EPA 6020B/SM3113B
Cadmium	ND				ND							5	MCL	ug/L	1	EPA 6020B/SM3113B
Chromium	ND				2.12							100	MCL	ug/L	20	EPA 6020B/SM3113B
Copper	ND				13.1							1000	MCL	ug/L	2	EPA 6020B/SM3113B
Iron	286				0.792							-	-	ug/L	100	EPA 6020B/SM3113B
Lead	ND	B-02				B-02						15	MCL	ug/L	1	EPA 6020B/SM3113B
Magnesium					9140							-	-	ug/L		EPA 6020B
Manganese	ND				28.7							50	MCL	ug/L	50	EPA 6020B/SM3113B
Mercury	ND				ND							2	MCL	ug/L	1	EPA 6020B/SM3113B
Molybdenum		B-02			ND	B-02						-	-	ug/L		EPA 6020B
Nickel	ND				2.19							-	-	ug/L	50	EPA 6020B/SM3113B
Potassium					16700							-	-	ug/L		EPA 6020B
Selenium	ND				ND							50	MCL	ug/L	5	EPA 6020B/SM3113B
Silver	ND				ND							100	MCL	ug/L	10	EPA 6020B/SM3113B
Sodium	50,200				40400							-	-	ug/L	1000	EPA 6020B/SM3113B
		-										-				

Sample Date:	5/2/2023		10/17/2023		5/1/2024		5/1/2024	5/1/2024	6/20/2024	5/1/2024	6/20/2024					
Sample ID:	IN_20230502		IN_20231017	T .	WW-050124	T	MW-1	MW-2	MW-3s	MW-3d	MW-4				Reporting	
Analyte	Result	Q	Result	Q	Result	Q	Result	Result	Result	Result	Result	Standard	Criteria	Units	Limit	Method Reference
Thallium	ND				ND							2	MCL	ug/L	1	EPA 6020B/SM3113B
Boron		R-04			274	R-04						-	-	ug/L		EPA 6020B
Lithium		B-02			ND	B-02						-	-	ug/L		EPA 6020B
Strontium					94.9							-	-	ug/L		EPA 6020B
Vanadium					4.09							-		ug/L		EPA 6020B
Zinc	54.7				61.5							5000	MCL	ug/L	10	EPA 6020B/SM3113B
Calcium					21500							-	-	ug/L		EPA 6020B
						Ammonia (N	H3) by Gas Diffusion	on and Colormetri	c Detection							
Ammonia as N					51.8							-	-	mg/L		SM 4500-NH3 G
							Anions by Ion Ch	romatography								
Bromide					ND							-	-	mg/L		EPA 300.0
Chloride					37.1							250	MCL	mg/L		EPA 300.0
Fluoride	7.41*/ND		ND		ND							2	MCL	mg/L	0.2	EPA 300.0
Nitrate-Nitrogen	ND				ND							10	MCL	mg/L	0.2	EPA 300.0
Nitrite-Nitrogen	ND				ND							1	MCL	mg/L	0.2	EPA 300.0
Sulfate					10.9							250	MCL	mg/L		EPA 300.0
7.10				1		Cyanide by l	JV Digestion/Gas I	Diffusion/Ampero	metric Detection			1		- 0		D7544.40
Total Cyanide					0.0235	<u> </u>	D 1() D:					_	-	mg/L		D7511-12
Dhaarkawa						nospnorus by	/ Persulfate Digest	tion/Colorimetric s	spectropnotometr	y I						SM 4500-P E
Phosphorus					6.01		Solid and Moisture	Dotorminations				-	-	mg/L		SM 4500-P E
Total Dissolved Solids		l		1	307	, 	Soliu ariu Moisture	Determinations				500	MCL	ma/l	_	SM 2540 C
Total Dissolved Solids					307		General Chemis	try Parameters				500	IVICL	mg/L		3W 2540 C
рН				1	7.2	H-12	deficial offernis	try i arameters				6.5-8.5	_	pH Units	_	SM 4500-H+ B
pH Temperature (deg C)					20.4	H-12						-	_	pH Units	_	SM 4500-H+ B
Conductivity					788	1112						_	_	umhos/cm**		SM 2510 B
Total Alkalinity	279				296							_	_	mg CaCO3/L	10	SM2320B
Bicarbonate Alkalinity	340.4				296							_	_	mg CaCO3/L	10	SM2320B
Hardness as CaCO3	86				200							_	_	mg CaCO3/L	10	SM2320B
Carbonate Alkalinity					ND							_	_	mg CaCO3/L	-	SM 2510 B
Hydroxide Alkalinity					ND									mg CaCO3/L		SM 2510 B
							Radionu	ıclides								
Uranium	ND											30	MCL	ug/L	0.3	E200.8
Gross Alpha	-5±1.7	U										-	-	pCi/L	3.1	EPA9.00
Gross Beta	14.8±3.1											-	-	pCi/L	3.9	EPA9.01
Radium 226	-0.05±0.2	U										-	-	pCi/L	0.3	EPA903.0
Radium 228	2.5±1.1											-	-	pCi/L	1.6	RA-05
Radium 226+228	2.6±1.1											-	-	pCi/L	1.6	A7500-RA
							Field Para	ameters								
Temperature							12.0	11.7	13.5	12.7	13.7	-	-	°C		Field Instrument
Specific Conductivity							239.1	176.5	133.0	199.2	88.6	-	-	uS/cm		Field Instrument
Dissolved Oxygen							5.0	7.4	5.1	4.1	5.8	-	-	mg/L		Field Instrument
pH (field)							6.06	6.32	6.03	6.85	6.19	-	-	pH Units		Field Instrument
Oxidation-Reduction Potential							256.9	240.9	167.4	204.9	162.7	-	-	mV		Field Instrument
Turbidity							0.22	0.32	0.33	0.94	0.65	-	-	NTU		Field Instrument

Notes

Analyte Detected Above MCL

MCL: Maximum Contaminant Level (the highest level of contamination that is considered acceptable in drinking water)

MRL: Method Reporting Limit (lowest amount (minimum concentration) of a chemical detected in a sample that can be considered reliable)

ND: Analyte NOT DETECTED at or above the detection or reporting limit

Detection Limit: Lowest concentration of an analyte that can be reliably detected

Reporting Limit: Lowest concentration of analyte that a laboratory can report with reasonable accuracy for a specific sample

- B: Neilson Research Corperation, ORELAP ID#0R100016
- U: Not detected at Minimum Detectable Concentration
- Q: Laboratory Data Qualifier
- * False positive. Fluoride was detected in a sample of untreated wastewater collected on May 2, 2023. Because this high level was an unexpected result, the City re-sampled untreated wastewater for fluoride in duplicate on October 17, 2023. Fluoride was not detected in either of the subsequent sample analyses and the May 2 detection of fluoride is considered to be lab error.

Table 5 Water Quality Laboratory Analytical Results - PFAS

Gates/Mill City Water Quality Sampling and Analysis Technical Memorandum

Sample Location	Sample Date	Lab Report ID	Lab
MW-1	5/1/2024	MEE0128	Anatek Labs, Inc.
MW-2	5/1/2024	MEE0128	Anatek Labs, Inc.
MW-3d	5/1/2024	MEE0128	Anatek Labs, Inc.
MW-3s	6/20/2024	MEF0657	Anatek Labs, Inc.
MW-4	6/20/2024	MEF0657	Anatek Labs, Inc.
Wastewater Influent	5/1/2024	MEE0128	Anatek Labs, Inc.
Santiam River SW-1	5/1/2024	MEE0128	Anatek Labs, Inc.
Santiam River SW-2	5/1/2024	MEE0128	Anatek Labs, Inc.
GM1-MW2	6/20/2024	MEF0657	Anatek Labs, Inc.
GM1-MW3	6/20/2024	MEF0657	Anatek Labs, Inc.

Sample Date:							5/1/2024								6/20	0/2024									
Sample Location:			Treatment Pla	ant				Santiam I	River			Treatment Plan	it				Site 6	M1							
Sample ID:	MW-1		MW-2		MW-3d						Influent Result	MW-3s		MW-4		GM1-MW2		GM1-MW3							Method Reference
Analyte	Result	0	Result	Q	Result	Q	SW-1 Result	Q	SW-1 Result	Q		Q Result	Q	Result	Q	Result	Q	Result	Q	Standard	Criteria		MDL	PQL	
11CI-PF30UdS	ND	Q	ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00392	0.01	EPA 1633
3:3FTCA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-	-	ug/L	0.0112	0.05	EPA 1633
4:2FTS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-	-	ug/L	0.00316	0.02	EPA 1633
5:3FTCA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0445	0.1	EPA 1633
6:2FTS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00306	0.02	EPA 1633
7:3FTCA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0474	0.1	EPA 1633
8:2FTS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00428	0.02	EPA 1633
9CI-PF30NS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00514	0.01	EPA 1633
ADONA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0039	0.01	EPA 1633
HFPO-DA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		0.01	MCL	ug/L	0.00294	0.01	EPA 1633
NEtFOSA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00178	0.01	EPA 1633
NEtFOSE	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0015	0.01	EPA 1633
N-EtFOSSA	ND		ND		ND		ND		ND		0.0058	ND		ND		ND		ND		-		ug/L	0.0012	0.01	EPA 1633
NFDHA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00522	0.02	EPA 1633
NMeFOSA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00124	0.01	EPA 1633
N-MeFOSAA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.001	0.01	EPA 1633
NMeFOSE	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00186	0.01	EPA 1633
PFBA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0147	0.02	EPA 1633
PFBS	0.00414	J	0.003	J	ND	J	ND	J	ND	J	0.00446	0.00198		ND		ND		ND		-		ug/L	0.00066	0.01	EPA 1633
PFDA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00238	0.01	EPA 1633
PFDoA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00192	0.01	EPA 1633
PFDoS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00106	0.01	EPA 1633
PFDS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00092	0.01	EPA 1633
PFEESA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00232	0.02	EPA 1633
PFHpA	0.00151	J	ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0012	0.01	EPA 1633
PFHpS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00092	0.01	EPA 1633
PFHxA	0.0059	J	0.00212	J	ND		ND		ND		0.00222	J ND		ND		ND		ND		-		ug/L	0.00084	0.01	EPA 1633
PFHxS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		0.01	MCL	ug/L	0.00104	0.01	EPA 1633
PFMBA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0024	0.02	EPA 1633
PFMPA	ND		ND		ND		ND		ND		0.00458	J ND		ND		ND		ND		-		ug/L	0.00152	0.02	EPA 1633
PFNA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		0.01	MCL	ug/L	0.00122	0.01	EPA 1633
PFNS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00106	0.01	EPA 1633
PFOA	0.00792	J	0.0029	J	ND		ND		ND		ND	ND		ND		ND		ND		0.004	MCL	ug/L	0.00162	0.01	EPA 1633
PFOS	0.0131		0.00416		0.00142	J	ND		ND		ND	0.00413		ND		ND		ND		0.004	MCL	ug/L	0.00126	0.01	EPA 1633
PFOSA	0.000926	J	ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.0009	0.01	EPA 1633
PFPeA	0.00524	J	ND		ND		ND		ND		ND	ND		ND		0.00238	J	0.0056	J	-		ug/L	0.00204	0.01	EPA 1633
PFPeS	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-		ug/L	0.00108	0.01	EPA 1633
PFTeDA	ND		ND		ND		ND		ND		ND	ND		ND		ND		0.0106	J	-		ug/L	0.0031	0.02	EPA 1633
PFTrDA	ND		ND		ND		ND		ND		ND	ND		ND		ND		0.0146	J	-		ug/L	0.00358	0.02	EPA 1633
PFUnA	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		-	-	ug/L	0.00198	0.01	EPA 1633
Notes:				-																					

Constituent Detected Above MCL

MDL: Method Detection Limit

- PQL: Practical Quantitation Limits
- J: The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
- U: Compound was analyzed for but not detected
- ND: Not Detected
- Dry: Sample results reported on a dry weight basis
- * EPA NPDWR Maximum Contaminant Level (https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas)
- RPD: Relative Percent Difference
- %REC: Percent Recovery

Source: Sample that was spiked or duplicated

Table 6 Water Quality Laboratory Analytical Results - Santiam River Gates/Mill City Water Quality Sampling and Analysis Technical Memorandum

Sample Location	Sample Date	Lab Report ID	Lab
SW-1	5/1/2024	A4E0861	Apex Laboratories
SW-2	3/1/2024	A4E0801	Apex Laboratories

Sample Date:	5/1/2	024						
Analyte	SW-1 Result	SW-2 Result	Standard	Criteria	Units	Reporting Limit	Method	Q
Total Dissolved Solids (TDS)		49.0	500	SMCL	mg/L	5	SM2540C	
Total Suspended Solids (TSS)	ND	ND	-	-	mg/L	5	SM5210B	TSS
Biochemical Oxygen Demand (BOD)	ND	ND	-	-	mg/L	1.88	SM5210B	
pH*	7.5	7.5	6.5-8.5	SMCL	pH units	-	SM4500-H+B	H-12

Notes:

H-12: Sample Analysis or Filtration was performed >15 minutes after sample collection.

TSS: Dried residue was less than 2.5 mg as specified in the method. Results meet regulatory requirements.

MCL Maximum Contaminant Level

SMCL Secondary Maximum Contaminant Level

* Lab pH value (not collected in the field)

Table 7
Water Quality Laboratory Analytical Results - Seeps
Gates/Mill City Water Quality Sampling and Analysis Technical Memorandum

Sample ID	Sample Date	Lab Report ID	Lab
1-9	4/11/2024	A4D1160 - 04 17 24 2005	Apex Laboratories
1-9	4/18/2024	A4D1382 - 04 29 24 1805	Apex Laboratories

Sample ID:	1	2	3	4	5	6	7	8	9	Sample Date	Ctandard	Criteria	Unito	Reporting Limit	Mothod	0
Analyte	Result	Sample Date	Standard	Criteria	Units		Method	Q								
Nitrate	1.33	1.18	7.57	7.92	7.58	5.33	1.63	1.57	1.32	4/11/2024	10	MCL	mg/L	0.25	EPA300.0	
Total Dissolved Solids (TDS)	89	90	160	166	165	148	95	111	145		500	SMCL	mg/L	5	SM2540C	
Total Suspended Solids (TSS)	5	5	5	41	5	162	5	582	50	4/18/2024			mg/L	5	SM5210B	TSS
Biochemical Oxygen Demand	1.88	1.88	1.88	1.88	1.88	1.88	1.88	3.21	2.93	4/10/2024			mg/L	1.88	SM5210B	
рН*	6.7	6.6	6	6.4	6.2	6.4	6.3	6.7	7.2		6.5-8.5	SMCL	pH units		SM4500-H+B	H-12

Notes:

H-12: Sample Analysis or Filtration was performed >15 minutes after sample collection (for all samples).

TSS: Dried residue was less than 2.5mg as specified in the method (for all samples). Results meet regulatory requirements.

MCL Maximum Contaminant Level

SMCL Secondary Maximum Contaminant Level

* Lab pH value (not collected in the field)

-ATTACHMENT A-Lab Reports

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, February 26, 2024 Jesse Hall GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209

RE: A4B1471 - Santiam Canyon-Idanha - 464.020

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4B1471, which was received by the laboratory on 2/23/2024 at 2:25:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 5.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevemberg

Page 1 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

55 SW Yamhill St, Ste 300Project Number: 464.020Report ID:Portland, OR 97209Project Manager: Jesse HallA4B1471 - 02 26 24 2033

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	IATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GM1MW1 20240223	A4B1471-01	Water	02/23/24 11:45	02/23/24 14:25

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 2 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

ANALYTICAL SAMPLE RESULTS

		Anions	by Ion Chrom	atography				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1MW1 20240223 (A4B1471-01)				Matrix: W	ater			
Batch: 24B0829								
Nitrate-Nitrogen	0.843		0.250	mg/L	1	02/23/24 18:25	EPA 300.0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

55 SW Yamhill St, Ste 300 Project Number: 464.020 Report ID:
Portland, OR 97209 Project Manager: Jesse Hall A4B1471 - 02 26 24 2033

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24B0829 - Method Prep	: Aq						Wat	ter				
Blank (24B0829-BLK1)			Prepared	: 02/23/24	16:16 Ana	yzed: 02/23	/24 17:42					
EPA 300.0 Nitrate-Nitrogen	ND		0.250	mg/L	1							
LCS (24B0829-BS1)			Prepared	: 02/23/24	16:16 Ana	yzed: 02/23	/24 18:04					
EPA 300.0 Nitrate-Nitrogen	2.04		0.250	mg/L	1	2.00		102	90-110%			
Duplicate (24B0829-DUP1)			Prepared	: 02/23/24	16:16 Ana	yzed: 02/23	/24 18:47					
OC Source Sample: GM1MW1 20 EPA 300.0	240223 (A4	B1471-01)										
Nitrate-Nitrogen	0.841		0.250	mg/L	1		0.843			0.2	3%	
Matrix Spike (24B0829-MS1)			Prepared	: 02/23/24	16:16 Ana	yzed: 02/23	/24 19:08					
OC Source Sample: GM1MW1 20	240223 (A4	B1471-01)										
EPA 300.0 Nitrate-Nitrogen	3.41		0.312	mg/L	1	2.50	0.843	103	87-112%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 4 of 11

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

SAMPLE PREPARATION INFORMATION

		Д	nions by Ion Chroma	itography			
Prep: Method Prep:	<u>Aq</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24B0829							
A4B1471-01	Water	EPA 300.0	02/23/24 11:45	02/23/24 16:16	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

There are No Qualifiers on Sample or QC Data for this report

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 6 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Benzofluoranthene Isomer Reporting:

Due to coelution on the analytical column, the Benzo(b)fluoranthene results represent the concentration of both Benzo(b)fluoranthene and Benzo(j) fluoranthene. Calibration is based on the response of Benzo(b)fluoranthene, and the results represent the combined Benzo(b+j)fluoranthene(s).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam Canyon-Idanha

 55 SW Yamhill St, Ste 300
 Project Number: 464.020
 Report ID:

 Portland, OR 97209
 Project Manager: Jesse Hall
 A4B1471 - 02 26 24 2033

0100 5# sandourg 5t., 11gara, OK 97225 fri: 505-110-2523	7/463 411.	rr-cac		1		-		-			V	_	- [10			L		1				
Company: (42)		Project Mgr.		S 28 8		¥	198	7	Project Name: Chartle M	ame:	§		2 (: او	Hall Project Name: Dartlean Outon		Project #:		9	707.000	3		-
Sampled by:	1	1		2		9	2	5			ት	Ţ	3		ANALYSIS REGIFES	200	<u></u>		1000 1000 1000 1000 1000 1000 1000 100				
Site Location:								-			-	-	-		K' p'	ď			_			-	
State	DATE	TIME	XISTAM	# OF CONTAINERS	NWTPH-HCID	NWTPH-Gx	8260 BTEX	8700 H ⁸ 10 AOC ⁸	8700 AOCs Enii Ffei	8HV4 WIS 0478	8270 Semi-Vols Full Lis	8082 Pesticides	RCRA Metals (8)	Priority Metals (13)	AL Sb, As, Ba, Be, C Ca, Cr, Co, Cu, Fe, P Hg, Mg, Mn, Mo, Ni, 1 Se, Ag, Na, Ti, V, Zn	TCLP Metals (8)		Witness.				Hold Sample	Frozen Archive
6M1MW 20240223	2/23	1145		-														×					.
				-														-					-
																							-
															ec ef								
											-												
Standard T	Standard Turn Around Time (TAT) = 10 Business Days	me (TAT)	= 10 Bus	iness Da	ks.					SPEC	SPECIAL INSTRUCTIONS:	STR	CTIO	:Si									
	1 Day		2 Day		3 Day																		
TAT Requested (circle)	5 Day		Standard		Other:																		
WAS.	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 3	0 DAYS													8			200				
HELLINQUISHED BY,	Date: 02/23/2024	72%	RECEIVED BY: Signature	E B.	7	_ ,,	Date: 2/25/	1/2	7	RELINQUISHED BY: Signature:	NQUISI	8 038	ä		Date:		RECEIVED BY: Signature:	WED IN	ü	_	Date:		
Jessa Hall	1425 1425	8	Printed Name	7	7		Time:	27	1	Printed	Printed Name:				Тіте:		Printed Name:	Name:			Time:		
Company:			Company:	\	12	1				Company:	any:						Company:	E E					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 11

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam Canyon-Idanha

Project Number: **464.020**Project Manager: **Jesse Hall**

Report ID: A4B1471 - 02 26 24 2033

	APEX LABS COOLER RECEIPT FORM
Client: <u>GST</u>	Element WO#: A4_B1471
Project/Project #:	Santiam Canyon / 464.020
Delivery Info:	, .
Date/time received: 1/2	3/4 @ 1425 By: My
- 1	nt ESS FedEx UPS Radio Morgan SDS Evergreen Other
	te/time inspected: 1/25/14 @ /425 By:
Chain of Custody included	
Signed/dated by client?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.8
Custody seals? (Y/N)	
Received on ice? (Y/N)	<u>Y</u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other)	Peal
Condition (In/Out):	<u>In</u>
All samples intact? Yes	No Comments:
Bottle labels/COCs agree?	Yes No Comments: (abel words 1245
COC/container discrepanc	es form initiated? Yes No
='	ed appropriate for analysis? Yes No Comments:
Do VOA sviele hosse sieible	hadana 8 Na Na Na
Comments	headspace? Yes No NA
Water samples: pH checke	d: Yes No NA ph ID:
Comments:	
Additional information:	
Labeled by:	Witness: Cooler Inspected by:
4>	Form Y-003 R-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Burlington, WA Corporate Laboratory (a)

Bellingham, WA Microbiology (b)

Portland, OR Microbiology/Chemistry (c)

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 1

VOLATILE ORGANIC COMPOUNDS (VOC) REPORT

Client Name: GSI Water Solutions, Inc.

650 NE Holladay Street Ste 900

Portland, OR 97232

System Name:

System ID Number:

DWP Source Number:

Multiple Sources:

Sample Type:

Sample Purpose: Investigative or Other

Sample Location: GM1-MW1

County:

Sampled By: Jesse Hall

Sampler Phone:

Project: Santiam Canyon Infiltration Eval

Reference Number: 23-22395

Field ID: GM1

Lab Number: 23 44385

Date Collected: 7/25/23 11:00

Date Extracted: 524_230728 Date Analyzed: 07/28/23

Report Date: 8/4/23

Analyst: NML

Approved By: pdm

Authorized By:

Thanh B Phan Lab Manager, Portland

EPA#	COMPOUNDS	RESULTS	UNITS	LRL	MCL	Method	Lab Code*	COMMENT
	EPA/State Regulated							
2977	1,1 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.007	524.2	4072 a	
2981	1,1,1 - TRICHLOROETHANE	ND	mg/L	0.0005	0.200	524.2	4072 a	1
2985	1,1,2 - TRICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	1
2980	1,2 - DICHLOROETHANE	ND	mg/L	0.0005	0.005	524.2	4072 a	1
2983	1,2 - DICHLOROPROPANE	ND	mg/L	0.0005	0.005	524.2	4072 a	ı
2378	1,2,4 - TRICHLOROBENZENE	ND	mg/L	0.0005	0.070	524.2	4072 a	ı
2990	BENZENE	ND	mg/L	0.0005	0.005	524.2	4072 a	ı
2982	CARBON TETRACHLORIDE	ND	mg/L	0.0005	0.005	524.2	4072 a	ı
2989	CHLOROBENZENE	ND	mg/L	0.0005	0.100	524.2	4072 a	a l
2380	CIS - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.070	524.2	4072 a	a l
2992	ETHYLBENZENE	ND	mg/L	0.0005	0.700	524.2	4072 a	a l
2964	METHYLENE CHLORIDE (Dichloromethal	ND	mg/L	0.0005	0.005	524.2	4072 a	t
2968	O - DICHLOROBENZENE	ND	mg/L	0.0005	0.600	524.2	4072 a	t
2969	P - DICHLOROBENZENE	ND	mg/L	0.0005	0.075	524.2	4072 a	a l
2996	STYRENE	ND	mg/L	0.0005	0.100	524.2	4072 a	t
2979	T - 1,2 - DICHLOROETHYLENE	ND	mg/L	0.0005	0.100	524.2	4072 a	t
2987	TETRACHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	t
2991	TOLUENE	ND	mg/L	0.0005	1.0	524.2	4072 a	t
2955	TOTAL XYLENES	ND	mg/L	0.0005		524.2	4072 a	a l
2984	TRICHLOROETHYLENE	ND	mg/L	0.0005	0.005	524.2	4072 a	1
2976	VINYL CHLORIDE	ND	mg/L	0.0005	0.002	524.2	4072 a	1

NOTES:

If a compound is detected > or = to the Lower Reporting Level, LRL, specified increased monitoring frequencies may occur per PHD.

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA. Blank MCL value indicates a level is not currently established.

ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

An * in front of the parameter name indicates it is not NELAP accredited but it is accredited through WSDOH or USEPA Region 10.

These test results meet all the requirements of NELAP, unless otherwise stated in writing, and relate only to these samples. Estimates of uncertainty are not included in this report. If this information is required please contact us at the phone number listed in the report header

Burlington, WA Corporate Laboratory (a)
1620 S Walnut St - Burlington, WA 98233 - 800.755.9295 • 360.757.1400

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212 Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.78

Corvallis, OR Microbiology/Chemistry (d)
1100 NE Circle Blvd. Ste 130 - Corvallis, OR 97330 - 541,753,4946

Bend, OR *Microbiology* (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

ORELAP 4072 Idaho WA00097 Page 1 of 1

ORGANICS IN DRINKING WATER

Client Name: GSI Water Solutions, Inc.

55 SW Yamhill Street Ste 300

Portland, OR 97204

System Name:

System ID Number:

DWP Source Number:

Multiple Sources:

Sample Type:

Sample Purpose: Investigative or Other

Sample Composition:

Sample Location: GM1MW1

County:

Reference Number: 23-15512

Project: Santiam Canyon 0464.020.001 -

Field ID: GM1MW10523

Lab Number: 23_31092

Date Collected: 5/28/23 11:20 Sampled By: Mellisa Girbach

Sampler Phone:

Report Date: 7/12/23

Approved By: nml,pdm

Authorized By:

Thanh B Phan Lab Manager, Portland

COMPOUNDS RESULTS UNITS EPA# LRL MCL **METHOD** Analyst Lab Analyzed COMMENT **Synthetic Organic Chemicals** 2105 2.4 - D ND 0.0001 0.070 515 4 RFR mg/L 4072 06/09/23 ND 2110 2,4,5 - TP (SILVEX) mg/L 0.0001 0.050 515.4 BFR 06/09/23 4072 ND 2035 DI(2-ETHYLHEXYL)-ADIPATE mg/L 0.00005 0.400 525.2 MA 4072 06/30/23 2051 **ALACHLOR** ND 0.00005 0.002 525.2 mg/L MA 4072 06/30/23 2050 **ATRAZINE** ND mg/L 0.00005 0.003 525.2 MA 06/30/23 4072 2306 BENZO(A)PYRENE ND mg/L 0.00005 0.0002 525.2 MΑ 4072 06/30/23 2010 LINDANE (BHC - GAMMA) ND mg/L 0.00005 0.0002 525.2 MA 06/30/23 4072 **CARBOFURAN** ND 0.040 2046 mg/L 0.001 531.2 MA 4072 06/21/23 ND 2959 **CHLORDANE** 0.0001 0.002 508 1 mg/L MA 4072 06/22/23 2031 **DALAPON** ND mg/L 0.0005 0.200 515.4 RFR 4072 06/09/23 ND 2931 1,2-DIBROMO-3-CHLOROPROPANE mg/L 0.00002 0.0002 504.1 MA 4072 06/07/23 2041 DINOSEB ND mg/L 0.0001 0.007 515.4 BFR 4072 06/09/23 2032 **DIQUAT** ND mg/L 0.0004 0.020 549.2 **KRC** 4072 06/07/23 ND 2033 **ENDOTHALL** mg/L 0.005 0.100 548.1 MA 4072 06/14/23 **ENDRIN** ND 0.00005 0.002 2005 mg/L 525.2 MA 4072 06/30/23 ND 0.00002 0.00005 2946 1,2 - DIBROMOETHANE (EDB) mg/L 504 1 MA 4072 06/07/23 ND **GLYPHOSATE** 0.700 2034 mg/L 0.005 547 MA 4072 06/20/23 ND 0.00005 | 0.0002 HEPTACHLOR EPOXIDE "B" 2067 mg/L 525.2 MA 4072 06/30/23 ND 2065 **HEPTACHLOR** 0.00005 0.0004 525.2 mg/L MA 4072 06/30/23 **HEXACHLOROBENZENE** ND 0.00005 0.001 525.2 2274 mg/L MA 4072 06/30/23 HEXACHLOROCYCLO-PENTADIENE ND 0.050 2042 mg/L 0.00005 525.2 MA 4072 06/30/23 2015 **METHOXYCHLOR** ND 0.00005 0.040 525.2 mg/L MA 4072 06/30/23 2326 **PENTACHLOROPHENOL** ND 0.00004 0.001 515.4 BFR mg/L 4072 06/09/23 DI(2-ETHYLHEXYL)-PHTHALATE ND 0.006 2039 0.0001 525 2 mg/L MA 4072 06/30/23 ND 0.500 2040 **PICLORAM** mg/L 0.0001 515.4 **BFR** 4072 06/09/23 ND 2037 SIMAZINE mg/L 0.00005 0.004 525.2 MA 4072 06/30/23 2020 **TOXAPHENE** ND mg/L 0.001 0.003 508.1 MA 4072 06/22/23 OXAMYL (VYDATE) ND 0.200 2036 mg/L 0.001 531.2 MA 4072 06/21/23 ND 0.0005 2383 PCBS (Total Aroclors) mg/L 0.0002 508.1 MA 4072 06/22/23

NOTES:

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; a blank MCL value indicates a level is not currently established. ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting Limit (LRL).

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, May 14, 2024
Jesse Hall
GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

RE: A4D1585 - Santiam - 00464.027

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4D1585, which was received by the laboratory on 4/25/2024 at 4:47:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1 5.9 degC

Cooler #2 4.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GM1-MW4-042524	A4D1585-01	Water	04/25/24 11:50	04/25/24 16:47
GM1-MW2-042524	A4D1585-02	Water	04/25/24 14:50	04/25/24 16:47

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	V	Diatile Organ	ic Compound	us by EPA 8	∠סטט			
A 1.	Sample	Detection	Reporting	** *:	75.11 · · ·	Date	M 4 15 2	3.7
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: Wa	ater	Batch:	24E0144	
Acetone	ND		20.0	ug/L	1	05/03/24 13:27	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/03/24 13:27	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/03/24 13:27	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/03/24 13:27	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: Wa	ater	Batch:	24E0144				
1,2-Dichloropropane	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				
1,3-Dichloropropane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
2,2-Dichloropropane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,1-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				
Hexachlorobutadiene	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D				
2-Hexanone	ND		10.0	ug/L	1	05/03/24 13:27	EPA 8260D				
Isopropylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
4-Isopropyltoluene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
Methylene chloride	ND		10.0	ug/L	1	05/03/24 13:27	EPA 8260D				
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/03/24 13:27	EPA 8260D				
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
Naphthalene	ND		5.00	ug/L	1	05/03/24 13:27	EPA 8260D				
n-Propylbenzene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				
Styrene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D				
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D				
Toluene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D				
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/03/24 13:27	EPA 8260D				
Trichlorofluoromethane	ND		2.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
Vinyl chloride	ND		0.200	ug/L	1	05/03/24 13:27	EPA 8260D				
n,p-Xylene	ND		1.00	ug/L	1	05/03/24 13:27	EPA 8260D				
o-Xylene	ND		0.500	ug/L	1	05/03/24 13:27	EPA 8260D				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: Wate	r	Batch: 2	24E0144	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	05/03/24 13:27	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	05/03/24 13:27	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	05/03/24 13:27	EPA 8260D	
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wate	r	Batch: 2	24E0144	
Acetone	ND		20.0	ug/L	1	05/03/24 13:54	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/03/24 13:54	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/03/24 13:54	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
ec-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/03/24 13:54	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1-Chlorotoluene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
,2-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	V(Jiatile Organ	ic Compound	as by EPA 8.				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wa			24E0144	
· · · · · · · · · · · · · · · · · · ·								
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	05/03/24 13:54	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/03/24 13:54	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/03/24 13:54	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/03/24 13:54	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/03/24 13:54	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/03/24 13:54	EPA 8260D	
,1,1-Trichloroethane	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
,1,2-Trichloroethane	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Frichloroethene (TCE)	ND		0.400	ug/L	1	05/03/24 13:54	EPA 8260D	
Frichlorofluoromethane	ND		2.00	ug/L	1	05/03/24 13:54	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wate	er	Batch:	24E0144	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/03/24 13:54	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/03/24 13:54	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/03/24 13:54	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 109 %	Limits: 80-120 %	6 I	05/03/24 13:54	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	ó 1	05/03/24 13:54	EPA 8260D	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	ó 1	05/03/24 13:54	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 7 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GM1-MW4-042524 (A4D1585-01RE1)		<u> </u>		Matrix: W	ater	Batch:	24E0053	
Acenaphthene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Acenaphthylene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Anthracene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Benz(a)anthracene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzo(a)pyrene	ND		0.0294	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzo(b)fluoranthene	ND		0.0294	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzo(k)fluoranthene	ND		0.0294	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzo(g,h,i)perylene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Chrysene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Dibenz(a,h)anthracene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Fluoranthene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Fluorene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
l-Methylnaphthalene	ND		0.0392	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
2-Methylnaphthalene	ND		0.0392	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
Naphthalene	ND		0.0392	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
Phenanthrene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Pyrene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Carbazole	ND		0.0294	ug/L	1	05/02/24 17:11	EPA 8270E	
Dibenzofuran	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
2-Chlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
4-Chloro-3-methylphenol	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4-Dichlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4-Dimethylphenol	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4-Dinitrophenol	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
2-Methylphenol	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
3+4-Methylphenol(s)	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
2-Nitrophenol	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
I-Nitrophenol	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
Pentachlorophenol (PCP)	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
Phenol	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		nivolatile Orga	-			D /		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: Wa	ater	Batch:	24E0053	
2,3,5,6-Tetrachlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4,5-Trichlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4,6-Trichlorophenol	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Butyl benzyl phthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Diethylphthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Dimethylphthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Di-n-butylphthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Di-n-octyl phthalate	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
N-Nitrosodimethylamine	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
N-Nitroso-di-n-propylamine	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
N-Nitrosodiphenylamine	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
Bis(2-Chloroethyl) ether	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
Hexachlorobenzene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	
Hexachlorobutadiene	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
Hexachloroethane	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
2-Chloronaphthalene	ND		0.0196	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
4-Chlorophenyl phenyl ether	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
Aniline	ND		0.0980	ug/L	1	05/02/24 17:11	EPA 8270E	
4-Chloroaniline	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
2-Nitroaniline	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
3-Nitroaniline	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
4-Nitroaniline	ND		0.392	ug/L	1	05/02/24 17:11	EPA 8270E	
Nitrobenzene	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
2,4-Dinitrotoluene	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
2,6-Dinitrotoluene	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzoic acid	ND		2.45	ug/L	1	05/02/24 17:11	EPA 8270E	
Benzyl alcohol	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: Wate	r	Batch:	24E0053	
sophorone	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
Azobenzene (1,2-DPH)	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
3,3'-Dichlorobenzidine	ND		0.980	ug/L	1	05/02/24 17:11	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
1,3-Dinitrobenzene	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
1,4-Dinitrobenzene	ND		0.490	ug/L	1	05/02/24 17:11	EPA 8270E	
Pyridine	ND		0.196	ug/L	1	05/02/24 17:11	EPA 8270E	
1,2-Dichlorobenzene	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
1,3-Dichlorobenzene	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
1,4-Dichlorobenzene	ND		0.0490	ug/L	1	05/02/24 17:11	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 66 %	Limits: 44-120 %	1	05/02/24 17:11	EPA 8270E	
2-Fluorobiphenyl (Surr)			53 %	44-120 %	1	05/02/24 17:11	EPA 8270E	
Phenol-d6 (Surr)			24 %	10-133 %	1	05/02/24 17:11	EPA 8270E	
p-Terphenyl-d14 (Surr)			87 %	50-134 %	1	05/02/24 17:11	EPA 8270E	
2-Fluorophenol (Surr)			31 %	19-120 %		05/02/24 17:11	EPA 8270E	
2,4,6-Tribromophenol (Surr)			79 %	43-140 %	1	05/02/24 17:11	EPA 8270E	
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wate	r	Batch:	24E0053	
Acenaphthene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Acenaphthylene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Anthracene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Benz(a)anthracene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzo(a)pyrene	ND		0.0326	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzo(b)fluoranthene	ND		0.0326	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzo(k)fluoranthene	ND		0.0326	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzo(g,h,i)perylene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Chrysene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Dibenz(a,h)anthracene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Fluoranthene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Fluorene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
l-Methylnaphthalene	ND		0.0435	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
mapmanarene	1112		U.UTJJ	ug/L	1	35.02.2111.10		~ 50

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 10 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wa	ater	Batch:	24E0053	
Naphthalene	ND		0.0435	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
Phenanthrene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Pyrene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Carbazole	ND		0.0326	ug/L	1	05/02/24 17:46	EPA 8270E	
Dibenzofuran	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
2-Chlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
l-Chloro-3-methylphenol	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4-Dichlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4-Dimethylphenol	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4-Dinitrophenol	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
1,6-Dinitro-2-methylphenol	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
2-Methylphenol	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
3+4-Methylphenol(s)	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
2-Nitrophenol	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
l-Nitrophenol	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
Pentachlorophenol (PCP)	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
Phenol	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4,5-Trichlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4,6-Trichlorophenol	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Butyl benzyl phthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Diethylphthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Dimethylphthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Di-n-butylphthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Di-n-octyl phthalate	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
I-Nitrosodimethylamine	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
I-Nitroso-di-n-propylamine	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
I-Nitrosodiphenylamine	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
sis(2-Chloroethoxy) methane	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
Bis(2-Chloroethyl) ether	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
,2'-Oxybis(1-Chloropropane)	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Mathad D-f	N T - 4
Analyte	Result	riiilli	Limit			Analyzed	Method Ref.	Note
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: Wate	er	Batch:	24E0053	
Hexachlorobenzene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	
Hexachlorobutadiene	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
Hexachloroethane	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
2-Chloronaphthalene	ND		0.0217	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
4-Chlorophenyl phenyl ether	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
Aniline	ND		0.109	ug/L	1	05/02/24 17:46	EPA 8270E	
4-Chloroaniline	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
2-Nitroaniline	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
3-Nitroaniline	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
4-Nitroaniline	ND		0.435	ug/L	1	05/02/24 17:46	EPA 8270E	
Nitrobenzene	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
2,4-Dinitrotoluene	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
2,6-Dinitrotoluene	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzoic acid	ND		2.72	ug/L	1	05/02/24 17:46	EPA 8270E	
Benzyl alcohol	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
Isophorone	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
Azobenzene (1,2-DPH)	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
3,3'-Dichlorobenzidine	ND		1.09	ug/L	1	05/02/24 17:46	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
1,3-Dinitrobenzene	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
1,4-Dinitrobenzene	ND		0.543	ug/L	1	05/02/24 17:46	EPA 8270E	
Pyridine	ND		0.217	ug/L	1	05/02/24 17:46	EPA 8270E	
1,2-Dichlorobenzene	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
,3-Dichlorobenzene	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
,4-Dichlorobenzene	ND		0.0543	ug/L	1	05/02/24 17:46	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Recon	very: 63 %	Limits: 44-120 %	6 1	05/02/24 17:46	EPA 8270E	
2-Fluorobiphenyl (Surr)			51 %	44-120 %	6 I	05/02/24 17:46	EPA 8270E	
Phenol-d6 (Surr)			23 %	10-133 %	6 I	05/02/24 17:46	EPA 8270E	
p-Terphenyl-d14 (Surr)			80 %	50-134 %	6 1	05/02/24 17:46	EPA 8270E	
2-Fluorophenol (Surr)			31 %	19-120 %	6 I	05/02/24 17:46	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 12 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Comp	ounds by EP	A 8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: W	/ater	Batch:	24E0053	
Surrogate: 2,4,6-Tribromophenol (Surr)		Reco	very: 70 %	Limits: 43-140	0 % 1	05/02/24 17:46	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 13 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	S)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: W	ater			
Batch: 24E0261								
Aluminum	139		50.0	ug/L	1	05/08/24 06:45	EPA 6020B	
Antimony	ND		1.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Arsenic	ND		1.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Barium	2.98		2.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	05/08/24 06:45	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/08/24 06:45	EPA 6020B	
Chromium	ND		2.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Copper	ND		2.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Lead	1.79		0.200	ug/L	1	05/08/24 06:45	EPA 6020B	
Magnesium	6460		150	ug/L	1	05/08/24 06:45	EPA 6020B	
Manganese	40.3		1.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/08/24 06:45	EPA 6020B	
Molybdenum	ND		1.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Nickel	ND		2.00	ug/L	1	05/08/24 06:45	EPA 6020B	B-02
Potassium	1660		100	ug/L	1	05/08/24 06:45	EPA 6020B	
Selenium	ND		1.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Silver	ND		0.200	ug/L	1	05/08/24 06:45	EPA 6020B	
Sodium	5500		100	ug/L	1	05/08/24 06:45	EPA 6020B	
Thallium	ND		0.200	ug/L	1	05/08/24 06:45	EPA 6020B	
Boron	ND		10.0	ug/L	1	05/08/24 14:11	EPA 6020B	
Lithium	ND		5.00	ug/L	1	05/08/24 14:11	EPA 6020B	
Strontium	86.4		5.00	ug/L	1	05/08/24 14:11	EPA 6020B	
Vanadium	3.56		2.00	ug/L	1	05/08/24 06:45	EPA 6020B	
Zinc	ND		4.00	ug/L	1	05/08/24 06:45	EPA 6020B	
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: W	ater			
Batch: 24E0261								
Calcium	15400		600	ug/L	1	05/09/24 11:30	EPA 6020B	
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater			
Batch: 24E0261			<u> </u>					
Aluminum	ND		50.0	ug/L	1	05/08/24 06:51	EPA 6020B	
Antimony	ND		1.00	ug/L	1	05/08/24 06:51	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project Number: **Santiam**Project Number: **00464.027**Project Manager: **Jesse Hall**

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 602	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater			
Arsenic	ND		1.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Barium	2.13		2.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	05/08/24 06:51	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/08/24 06:51	EPA 6020B	
Chromium	ND		2.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Copper	ND		2.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/08/24 06:51	EPA 6020B	
Magnesium	6720		150	ug/L	1	05/08/24 06:51	EPA 6020B	
Manganese	8.31		1.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/08/24 06:51	EPA 6020B	
Molybdenum	ND		1.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Nickel	ND		2.00	ug/L	1	05/08/24 06:51	EPA 6020B	B-02
Potassium	1380		100	ug/L	1	05/08/24 06:51	EPA 6020B	
Selenium	ND		1.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Silver	ND		0.200	ug/L	1	05/08/24 06:51	EPA 6020B	
Sodium	5480		100	ug/L	1	05/08/24 06:51	EPA 6020B	
Thallium	ND		0.200	ug/L	1	05/08/24 06:51	EPA 6020B	
Boron	ND		10.0	ug/L	1	05/08/24 14:16	EPA 6020B	
Lithium	ND		5.00	ug/L	1	05/08/24 14:16	EPA 6020B	
Strontium	93.4		5.00	ug/L	1	05/08/24 14:16	EPA 6020B	
Vanadium	2.09		2.00	ug/L	1	05/08/24 06:51	EPA 6020B	
Zinc	ND		4.00	ug/L	1	05/08/24 06:51	EPA 6020B	
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: W	ater			
Batch: 24E0261								
Calcium	17700		600	ug/L	1	05/09/24 11:36	EPA 6020B	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 55 SW Yamhill St, Ste 300 Project Number: 00464.027 Portland, OR 97209 Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

Santiam

	Ammoi	nia by Gas D	iffusion and (Colorimetric	Detection			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: W	ater .	Batch:	: 24D1073	
Ammonia as N	ND		0.0200	mg/L	1	04/29/24 13:36	SM 4500-NH3 G	
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater	Batch:	: 24D1073	
Ammonia as N	ND		0.0200	mg/L	1	04/29/24 13:39	SM 4500-NH3 G	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 16 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		Anions	by Ion Chrom	atography				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: W	ater			
Batch: 24D1030								
Bromide	ND		1.00	mg/L	1	04/26/24 16:14	EPA 300.0	
Chloride	1.84		1.00	mg/L	1	04/26/24 16:14	EPA 300.0	
Fluoride	ND		1.00	mg/L	1	04/26/24 16:14	EPA 300.0	
Nitrate-Nitrogen	0.699		0.250	mg/L	1	04/26/24 16:14	EPA 300.0	
Nitrite-Nitrogen	ND		0.250	mg/L	1	04/26/24 16:14	EPA 300.0	
Sulfate	2.06		1.00	mg/L	1	04/26/24 16:14	EPA 300.0	
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater			
Batch: 24D1030								
Bromide	ND		1.00	mg/L	1	04/26/24 18:02	EPA 300.0	
Chloride	1.92		1.00	mg/L	1	04/26/24 18:02	EPA 300.0	
Fluoride	ND		1.00	mg/L	1	04/26/24 18:02	EPA 300.0	
Nitrate-Nitrogen	0.308		0.250	mg/L	1	04/26/24 18:02	EPA 300.0	
Nitrite-Nitrogen	ND		0.250	mg/L	1	04/26/24 18:02	EPA 300.0	
Sulfate	2.05		1.00	mg/L	1	04/26/24 18:02	EPA 300.0	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project Number: **Santiam**Project Number: **00464.027**Project Manager: **Jesse Hall**

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

	Total Cyanide b	y UV Digest	ion/Gas Diffu	ısion/Ampe	rometric D	etection		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: W	ater	Batch:	24E0029	
Total Cyanide	ND		0.00500	mg/L	1	05/01/24 15:24	D7511-12	
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater	Batch:	24E0029	
Total Cyanide	ND		0.00500	mg/L	1	05/01/24 15:32	D7511-12	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 18 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

Total	Phosphorus	by Persulfa	te Digestion/	Colorimetri	c Spectrop	hotometry		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: W	ater	Batch:	24E0080	
Phosphorus	ND		0.100	mg/L	1	05/02/24 16:38	SM 4500-P E	
GM1-MW2-042524 (A4D1585-02)				Matrix: W	ater	Batch:	24E0080	
Phosphorus	ND		0.100	mg/L	1	05/02/24 16:38	SM 4500-P E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 19 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project Number: **Santiam**Project Number: **00464.027**Project Manager: **Jesse Hall**

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	ermination	S			
	Sample	Detection	Reporting	** .	5 .1	Date	V 1 1 2 6	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01RE1)				Matrix: W	ater			
Batch: 24E0112								
Total Dissolved Solids	110		5.00	mg/L	1	05/02/24 19:08	SM 2540 C	
GM1-MW2-042524 (A4D1585-02RE1)				Matrix: W	ater			
Batch: 24E0112								
Total Dissolved Solids	115		5.00	mg/L	1	05/02/24 19:08	SM 2540 C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 20 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemisti	y Parameters	i			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GM1-MW4-042524 (A4D1585-01)				Matrix: Wat	er			
Batch: 24D0950								
рН	7.3			pH Units	1	04/25/24 18:43	SM 4500-H+ B	H-12
pH Temperature (deg C) Batch: 24D1034	21.6			pH Units	1	04/25/24 18:43	SM 4500-H+ B	H-12
Conductivity	145		2.50	umhos/cm @25degC	1	04/26/24 18:00	SM 2510 B	
Batch: 24D1070			20.0	G G02/		04/20/24 14 01	G) (2220 P	
Total Alkalinity	69.0		20.0	mg CaCO3/L	1	04/29/24 14:01	SM 2320 B	
Bicarbonate Alkalinity	69.0		20.0	mg CaCO3/L	1	04/29/24 14:01	SM 2320 B	
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	04/29/24 14:01	SM 2320 B	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	04/29/24 14:01	SM 2320 B	
GM1-MW2-042524 (A4D1585-02)				Matrix: Wat	er			
Batch: 24D0950								
рН	7.1			pH Units	1	04/25/24 18:47	SM 4500-H+ B	H-12
pH Temperature (deg C) Batch: 24D1034	21.6			pH Units	1	04/25/24 18:47	SM 4500-H+ B	H-12
Conductivity	157		2.50	umhos/cm @25degC	1	04/26/24 18:06	SM 2510 B	
Batch: 24D1070								
Total Alkalinity	76.6		20.0	mg CaCO3/L	1	04/29/24 14:24	SM 2320 B	
Bicarbonate Alkalinity	76.6		20.0	mg CaCO3/L	1	04/29/24 14:24	SM 2320 B	
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	04/29/24 14:24	SM 2320 B	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	04/29/24 14:24	SM 2320 B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24D1119 - EPA 5030C Water Blank (24D1119-BLK1) Prepared: 04/30/24 12:20 Analyzed: 04/30/24 17:28 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L 1 ug/L ND Bromodichloromethane 1.00 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ---------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ---ND 0.4001,1-Dichloroethane ug/L 1 1,2-Dichloroethane (EDC) 0.400ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24D1119 - EPA 5030C Water Blank (24D1119-BLK1) Prepared: 04/30/24 12:20 Analyzed: 04/30/24 17:28 ND 0.500 1,2-Dichloropropane ug/L ug/L 1,3-Dichloropropane ND 1.00 1 ---------2,2-Dichloropropane ND 1.00 ug/L 1 1,1-Dichloropropene ND 1.00 ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 trans-1,3-Dichloropropene ND 1.00 ug/L 1 0.500 Ethylbenzene ND ug/L 1 Hexachlorobutadiene ND 5.00 ug/L 1 10.0 2-Hexanone ND ug/L 1 Isopropylbenzene ND 1.00 ug/L 1 4-Isopropyltoluene ND 1.00 ug/L 1 Methylene chloride 10.0 ND ug/L 1 ND 10.0 4-Methyl-2-pentanone (MiBK) ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 Naphthalene ND 5.00 ug/L 1 n-Propylbenzene ND 0.500 ug/L ND 1.00 Stvrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 ------Tetrachloroethene (PCE) ND 0.400 ug/L Toluene ND 0.500 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.400ug/L ND 0.500 1,1,2-Trichloroethane ug/L 1 ---------Trichloroethene (TCE) ND 0.400 ug/L Trichlorofluoromethane ND 2.00 ug/L 1 ------1,2,3-Trichloropropane ND 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 1.00 ug/L 1 ---1,3,5-Trimethylbenzene ND 1.00 ug/L 1 Vinyl chloride ND 0.200 ug/L 1 --m,p-Xylene ND 1.00 ug/L 1 o-Xylene ND 0.500 ug/L 1

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Page 23 of 73

Limits: 80-120 %

Recovery: 101 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1119 - EPA 5030C							Wa	ter				
Blank (24D1119-BLK1)			Prepared	1: 04/30/24	12:20 Ana	lyzed: 04/30	/24 17:28					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80		Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
LCS (24D1119-BS1)			Prepared	1: 04/30/24	12:20 Anal	lyzed: 04/30	/24 15:57					
EPA 8260D												
Acetone	41.8		20.0	ug/L	1	40.0		104	80-120%			
Acrylonitrile	23.4		2.00	ug/L	1	20.0		117	80-120%			
Benzene	20.4		0.200	ug/L	1	20.0		102	80-120%			
Bromobenzene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Bromochloromethane	24.3		1.00	ug/L	1	20.0		121	80-120%			Q-5
Bromodichloromethane	21.9		1.00	ug/L	1	20.0		109	80-120%			
Bromoform	15.8		1.00	ug/L	1	20.0		79	80-120%			Q-5
Bromomethane	27.5		5.00	ug/L	1	20.0		137	80-120%			Q-5
2-Butanone (MEK)	47.4		10.0	ug/L	1	40.0		119	80-120%			
n-Butylbenzene	22.1		1.00	ug/L	1	20.0		110	80-120%			
sec-Butylbenzene	21.9		1.00	ug/L	1	20.0		110	80-120%			
tert-Butylbenzene	20.8		1.00	ug/L	1	20.0		104	80-120%			
Carbon disulfide	18.5		10.0	ug/L	1	20.0		93	80-120%			
Carbon tetrachloride	19.4		1.00	ug/L	1	20.0		97	80-120%			
Chlorobenzene	19.9		0.500	ug/L	1	20.0		100	80-120%			
Chloroethane	37.3		5.00	ug/L	1	20.0		187	80-120%			Q-5
Chloroform	20.5		1.00	ug/L	1	20.0		102	80-120%			
Chloromethane	25.0		5.00	ug/L	1	20.0		125	80-120%			Q-5
2-Chlorotoluene	19.3		1.00	ug/L	1	20.0		96	80-120%			
4-Chlorotoluene	20.8		1.00	ug/L	1	20.0		104	80-120%			
Dibromochloromethane	17.5		1.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromo-3-chloropropane	17.7		5.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromoethane (EDB)	20.3		0.500	ug/L	1	20.0		102	80-120%			
Dibromomethane	22.0		1.00	ug/L	1	20.0		110	80-120%			
1,2-Dichlorobenzene	20.6		0.500	ug/L	1	20.0		103	80-120%			
1,3-Dichlorobenzene	20.7		0.500	ug/L	1	20.0		103	80-120%			
1,4-Dichlorobenzene	20.0		0.500	ug/L	1	20.0		100	80-120%			
Dichlorodifluoromethane	20.6		1.00	ug/L	1	20.0		103	80-120%			
1,1-Dichloroethane	21.2		0.400	ug/L	1	20.0		106	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 24D1119 - EPA 5030C Water LCS (24D1119-BS1) Prepared: 04/30/24 12:20 Analyzed: 04/30/24 15:57 1,2-Dichloroethane (EDC) 23.0 0.400 20.0 115 ug/L 80-120% 0.400 1,1-Dichloroethene 22.6 ug/L 1 20.0 113 80-120% --------cis-1,2-Dichloroethene 21.5 0.400 ug/L 1 20.0 108 80-120% trans-1,2-Dichloroethene 20.3 0.400 ug/L 1 20.0 101 80-120% 20.0 102 1,2-Dichloropropane 20.5 0.50080-120% ug/L 1 1,3-Dichloropropane 21.3 1.00 ug/L 1 20.0 107 80-120% 2,2-Dichloropropane 1.00 O-55 15.7 --ug/L 1 20.0 **78** 80-120% 1,1-Dichloropropene 21.8 1.00 ug/L 1 20.0 109 80-120% 20.0 1.00 100 cis-1,3-Dichloropropene ug/L 1 20.0 80-120% trans-1,3-Dichloropropene 17.0 1.00 ug/L 1 20.0 85 80-120% Ethylbenzene 21.3 0.50020.0 106 80-120% ug/L 1 Hexachlorobutadiene 5.00 19.4 ug/L 1 20.0 97 80-120% 40.4 10.0 40.0 101 2-Hexanone ug/L 1 80-120% Isopropylbenzene 20.8 1.00 ug/L 1 20.0 104 80-120% 4-Isopropyltoluene 19.8 1.00 20.0 99 ug/L 1 80-120% Methylene chloride 19.5 10.0 ug/L 20.0 97 80-120% 4-Methyl-2-pentanone (MiBK) 10.0 46.4 ug/L 1 40.0 116 80-120% Methyl tert-butyl ether (MTBE) 16.4 1.00 1 20.0 82 80-120% ug/L Naphthalene 17.1 5.00 20.0 ug/L 1 86 80-120% --n-Propylbenzene 21.6 0.500 ug/L 1 20.0 108 80-120% 107 21.4 1.00 20.0 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 18.8 0.400 ug/L 1 20.0 94 80-120% 1,1,2,2-Tetrachloroethane 21.7 0.500 ug/L 20.0 108 80-120% 1 Tetrachloroethene (PCE) 18.8 0.4001 20.0 94 80-120% ug/L Toluene 20.2 0.500 20.0 101 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 20.2 2.00 ug/L 1 20.0 101 80-120% 1.2.4-Trichlorobenzene 19.4 2.00 20.0 97 80-120% ug/L 1 ------1,1,1-Trichloroethane 20.5 0.400 ug/L 1 20.0 102 80-120% 1,1,2-Trichloroethane 21.2 0.500 ug/L 1 20.0 106 80-120% ---Trichloroethene (TCE) 19.0 0.400ug/L 1 20.0 95 80-120% Trichlorofluoromethane 33.0 2.00 20.0 80-120% Q-56 ug/L 1 165 1,2,3-Trichloropropane 21.7 1.00 ug/L 1 20.0 108 80-120% 1,2,4-Trimethylbenzene 21.7 1.00 ug/L 1 20.0 108 80-120% 1,3,5-Trimethylbenzene 22.1 1.00 ug/L 1 20.0 110 80-120%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
Project: Santiam

55 SW Yamhill St, Ste 300
Project Number: 00464.027

Portland, OR 97209
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1119 - EPA 5030C							Wa	ter				
LCS (24D1119-BS1)			Prepared	1: 04/30/24	12:20 Ana	lyzed: 04/30	/24 15:57					
Vinyl chloride	21.2		0.200	ug/L	1	20.0		106	80-120%			
m,p-Xylene	44.3		1.00	ug/L	1	40.0		111	80-120%			
o-Xylene	20.4		0.500	ug/L	1	20.0		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	80	0-120 %		"					
Duplicate (24D1119-DUP1)			Prepared	1: 04/30/24	12:20 Ana	lyzed: 05/01	/24 03:01					
OC Source Sample: Non-SDG (A4	D1687-07)											
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		25.0	ug/L	10		ND				30%	R-0
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		110	ug/L	10		ND				30%	R-0
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	21.3		10.0	ug/L	10		19.7			8	30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		15.0	ug/L	10		ND				30%	R-0
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1119 - EPA 5030C							Wat	ter				
Duplicate (24D1119-DUP1)			Prepared	: 04/30/24	12:20 Ana	lyzed: 05/01/	/24 03:01					
QC Source Sample: Non-SDG (A4I)1687-07 <u>)</u>											
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
trans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
trans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
Isopropylbenzene	ND		10.0	ug/L	10		ND				30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		100	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	ND		50.0	ug/L	10		ND				30%	
n-Propylbenzene	33.3		5.00	ug/L	10		33.3			0	30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	ND		4.00	ug/L	10		ND				30%	
Toluene	ND		5.00	ug/L	10		ND				30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2-Trichloroethane	ND		15.0	ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1119 - EPA 5030C							Wa	ter				
Duplicate (24D1119-DUP1)			Prepared	1: 04/30/24	12:20 Anal	lyzed: 05/01	/24 03:01					
QC Source Sample: Non-SDG (A4	D1687-07)											
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		2.00	ug/L	10		ND				30%	
m,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A4	D1637-22)											
EPA 8260D												
Acetone	49.2		20.0	ug/L	1	40.0	ND	123	39-160%			
Acrylonitrile	24.0		2.00	ug/L	1	20.0	ND	120	63-135%			
Benzene	22.1		0.200	ug/L	1	20.0	ND	110	79-120%			
Bromobenzene	19.8		0.500	ug/L	1	20.0	ND	99	80-120%			
Bromochloromethane	26.2		1.00	ug/L	1	20.0	ND	131	78-123%			Q·
Bromodichloromethane	23.0		1.00	ug/L	1	20.0	ND	115	79-125%			
Bromoform	16.7		1.00	ug/L	1	20.0	ND	83	66-130%			Q-
Bromomethane	31.6		5.00	ug/L	1	20.0	ND	158	53-141%			Q-:
2-Butanone (MEK)	49.0		10.0	ug/L	1	40.0	ND	122	56-143%			
n-Butylbenzene	24.0		1.00	ug/L	1	20.0	ND	120	75-128%			
sec-Butylbenzene	24.7		1.00	ug/L	1	20.0	ND	124	77-126%			
tert-Butylbenzene	22.7		1.00	ug/L	1	20.0	ND	114	78-124%			
Carbon disulfide	20.7		10.0	ug/L	1	20.0	ND	103	64-133%			
Carbon tetrachloride	21.4		1.00	ug/L	1	20.0	ND	107	72-136%			
Chlorobenzene	21.3		0.500	ug/L	1	20.0	ND	107	80-120%			
Chloroethane	44.4		5.00	ug/L	1	20.0	ND	222	60-138%			Q-:
Chloroform	21.8		1.00	ug/L	1	20.0	ND	109	79-124%			
Chloromethane	27.2		5.00	ug/L	1	20.0	ND	136	50-139%			Q-5

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam

55 SW Yamhill St, Ste 300 Project Number: 00464.027

Portland, OR 97209 Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24D1119 - EPA 5030C Water Matrix Spike (24D1119-MS1) Prepared: 04/30/24 12:20 Analyzed: 04/30/24 22:55 QC Source Sample: Non-SDG (A4D1637-22) 2-Chlorotoluene 20.5 1.00 ug/L 1 20.0 ND 103 79-122% 4-Chlorotoluene 22.5 1.00 ug/L 1 20.0 ND 112 78-122% Dibromochloromethane 18.4 1.00 ug/L 1 20.0 ND 92 74-126% 1,2-Dibromo-3-chloropropane 19.7 5.00 ug/L 1 20.0 ND 98 62-128% 1,2-Dibromoethane (EDB) 21.3 0.500 1 20.0 ND 106 77-121% ug/L 22.4 1.00 Dibromomethane ug/L 1 20.0 ND 112 79-123% 1,2-Dichlorobenzene 21.7 0.500ug/L 1 20.0 ND 109 80-120% 21.9 0.5001,3-Dichlorobenzene ug/L 1 20.0 ND 109 80-120% 1,4-Dichlorobenzene 20.9 0.500 ug/L 1 20.0 ND 105 79-120% Dichlorodifluoromethane 23.1 1.00 ug/L 1 20.0 ND 115 32-152% 1,1-Dichloroethane 22.8 0.400 ug/L 1 20.0 ND 114 77-125% 1,2-Dichloroethane (EDC) 0.400 73-128% 24.0 ug/L 1 20.0 ND 120 0.400 Q-01 1,1-Dichloroethene 26.4 ug/L 1 20.0 ND 132 71-131% cis-1,2-Dichloroethene 23.0 0.400 20.0 ND ug/L 1 115 78-123% trans-1,2-Dichloroethene 0.400 22.5 ug/L 1 20.0 ND 112 75-124% 1,2-Dichloropropane 21.9 ---0.500 ug/L 1 20.0 ND 110 78-122% ___ 1,3-Dichloropropane 22.2 1.00 ug/L 1 20.0 ND 111 80-120% 15.5 1.00 20.0 ND 78 60-139% O-54k 2,2-Dichloropropane ug/L 1 24.1 79-125% 1,1-Dichloropropene 1.00 ug/L 1 20.0 ND 121 1.00 cis-1,3-Dichloropropene 18.5 20.0 ND 93 75-124% ug/L 1 1.00 88 73-127% trans-1,3-Dichloropropene 17.7 ug/L 20.0 ND Ethylbenzene 0.500 20.0 23.2 --ug/L 1 ND 116 79-121% Hexachlorobutadiene 21.9 5.00 ug/L 20.0 ND 110 66-134% 10.0 2-Hexanone 44.4 ug/L 1 40.0 ND 111 57-139% ------Isopropylbenzene 23.2 1.00 ug/L 1 20.0 ND 116 72-131% 1.00 ND 4-Isopropyltoluene 21.5 20.0 108 77-127% ug/L 1 Methylene chloride 20.4 10.0 ug/L 20.0 ND 102 74-124% ug/L 49.2 10.0 4-Methyl-2-pentanone (MiBK) 1 40.0 ND 123 67-130% ------Methyl tert-butyl ether (MTBE) 17.4 1.00 ug/L 1 20.0 ND 87 71-124% Naphthalene 19.6 5.00 20.0 ND 98 61-128% ug/L 1 n-Propylbenzene 23.7 0.500 ug/L 1 20.0 ND 118 76-126% 1.00 Styrene 23.0 20.0 ND 115 78-123% ug/L 1 ---1,1,1,2-Tetrachloroethane 20.1 0.400ug/L 1 20.0 ND 101 78-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam

55 SW Yamhill St, Ste 300 Project Number: 00464.027

Portland, OR 97209 Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting % REC RPD Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24D1119 - EPA 5030C Water Matrix Spike (24D1119-MS1) Prepared: 04/30/24 12:20 Analyzed: 04/30/24 22:55 QC Source Sample: Non-SDG (A4D1637-22) 1,1,2,2-Tetrachloroethane 23.6 0.500 ug/L 1 20.0 ND 118 71-121% ug/L 20.0 Tetrachloroethene (PCE) 20.4 0.400 74-129% 1 ND 102 0.500 80-121% Toluene 21.7 ug/L 1 20.0 ND 109 1,2,3-Trichlorobenzene 22.1 2.00 ug/L 1 20.0 ND 110 69-129% 1,2,4-Trichlorobenzene 21.6 2.00 ug/L 1 20.0 ND 108 69-130% 1,1,1-Trichloroethane 22.6 0.40020.0 74-131% ug/L 1 ND 113 0.500 1,1,2-Trichloroethane 22.2 ug/L 1 20.0 ND 111 80-120% 99 Trichloroethene (TCE) 19.8 0.40020.0 79-123% ug/L 1 ND Q-54f Trichlorofluoromethane 36.3 2.00 ug/L 1 20.0 ND 181 65-141% 1,2,3-Trichloropropane 22.5 1.00 ug/L 1 20.0 ND 113 73-122% 1,2,4-Trimethylbenzene 23.3 1.00 ug/L 1 20.0 ND 117 76-124% 1,3,5-Trimethylbenzene 1.00 23.9 20.0 75-124% ug/L 1 ND 119 23.8 0.200 20.0 58-137% Vinyl chloride ug/L ND 119 Q-01 1.00 48.8 ug/L 40.0 ND 122 80-121% m,p-Xylene 1 o-Xylene 0.500 78-122% 22.7 ug/L ND 113 Surr: 1,4-Difluorobenzene (Surr) 96 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 89 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0144 - EPA 5030C Water Blank (24E0144-BLK1) Prepared: 05/03/24 10:00 Analyzed: 05/03/24 12:30 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L 1 ug/L ND Bromodichloromethane 1.00 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ---ND 0.4001,1-Dichloroethane ug/L 1 1,2-Dichloroethane (EDC) 0.400ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 31 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0144 - EPA 5030C	Water											
Blank (24E0144-BLK1)			Prepared	: 05/03/24	10:00 Anal	yzed: 05/03/	/24 12:30					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		5.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.200	ug/L	1							
m,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Limits: 80-120 %

Recovery: 104 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0144 - EPA 5030C							Wa	iter				
Blank (24E0144-BLK1)			Prepared	1: 05/03/24	10:00 Ana	lyzed: 05/03	/24 12:30					
Surr: Toluene-d8 (Surr)		Recon	very: 102 %	Limits: 80	0-120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
LCS (24E0144-BS1)			Prepared	1: 05/03/24	10:00 Ana	lyzed: 05/03	/24 11:17					
EPA 8260D												
Acetone	44.0		20.0	ug/L	1	40.0		110	80-120%			
Acrylonitrile	23.1		2.00	ug/L	1	20.0		116	80-120%			
Benzene	21.0		0.200	ug/L	1	20.0		105	80-120%			
Bromobenzene	19.3		0.500	ug/L	1	20.0		96	80-120%			
Bromochloromethane	26.4		1.00	ug/L	1	20.0		132	80-120%			Q-5
Bromodichloromethane	22.8		1.00	ug/L	1	20.0		114	80-120%			
Bromoform	16.8		1.00	ug/L	1	20.0		84	80-120%			
Bromomethane	24.6		5.00	ug/L	1	20.0		123	80-120%			Q-5
2-Butanone (MEK)	47.7		10.0	ug/L	1	40.0		119	80-120%			
n-Butylbenzene	23.3		1.00	ug/L	1	20.0		116	80-120%			
sec-Butylbenzene	22.1		1.00	ug/L	1	20.0		110	80-120%			
tert-Butylbenzene	20.5		1.00	ug/L	1	20.0		102	80-120%			
Carbon disulfide	19.9		10.0	ug/L	1	20.0		99	80-120%			
Carbon tetrachloride	20.7		1.00	ug/L	1	20.0		103	80-120%			
Chlorobenzene	20.8		0.500	ug/L	1	20.0		104	80-120%			
Chloroethane	48.0		5.00	ug/L	1	20.0		240	80-120%			Q-5
Chloroform	21.8		1.00	ug/L	1	20.0		109	80-120%			
Chloromethane	19.6		5.00	ug/L	1	20.0		98	80-120%			
2-Chlorotoluene	19.5		1.00	ug/L	1	20.0		97	80-120%			
4-Chlorotoluene	21.3		1.00	ug/L	1	20.0		107	80-120%			
Dibromochloromethane	18.6		1.00	ug/L	1	20.0		93	80-120%			
1,2-Dibromo-3-chloropropane	16.7		5.00	ug/L	1	20.0		83	80-120%			
1,2-Dibromoethane (EDB)	20.7		0.500	ug/L	1	20.0		103	80-120%			
Dibromomethane	23.3		1.00	ug/L	1	20.0		116	80-120%			
1,2-Dichlorobenzene	21.1		0.500	ug/L	1	20.0		106	80-120%			
1,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
1,4-Dichlorobenzene	20.8		0.500	ug/L	1	20.0		104	80-120%			
Dichlorodifluoromethane	20.4		1.00	ug/L	1	20.0		102	80-120%			
1,1-Dichloroethane	22.1		0.400	ug/L	1	20.0		110	80-120%			

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0144 - EPA 5030C Water LCS (24E0144-BS1) Prepared: 05/03/24 10:00 Analyzed: 05/03/24 11:17 1,2-Dichloroethane (EDC) 24.4 0.400 20.0 122 O-56 ug/L 80-120% 0.400 1,1-Dichloroethene 23.6 ug/L 1 20.0 118 80-120% -----cis-1,2-Dichloroethene 22.1 0.400 ug/L 1 20.0 110 80-120% trans-1,2-Dichloroethene 20.6 0.400 ug/L 1 20.0 103 80-120% 20.0 1,2-Dichloropropane 21.1 0.500106 80-120% ug/L 1 1,3-Dichloropropane 22.2 1.00 ug/L 1 20.0 111 80-120% 1.00 2,2-Dichloropropane 17.9 --ug/L 1 20.0 89 80-120% 22.6 1,1-Dichloropropene 1.00 ug/L 1 20.0 113 80-120% 1.00 cis-1,3-Dichloropropene 20.4 ug/L 1 20.0 102 80-120% trans-1,3-Dichloropropene 18.0 1.00 ug/L 1 20.0 90 80-120% Ethylbenzene 21.7 0.50020.0 108 80-120% ug/L 1 Hexachlorobutadiene 5.00 19.2 ug/L 1 20.0 96 80-120% 40.9 10.0 40.0 102 2-Hexanone ug/L 1 80-120% Isopropylbenzene 20.5 1.00 ug/L 1 20.0 102 80-120% 4-Isopropyltoluene 19.8 1.00 20.0 99 ug/L 1 80-120% Methylene chloride 21.0 10.0 ug/L 20.0 105 80-120% 4-Methyl-2-pentanone (MiBK) 10.0 46.1 ug/L 1 40.0 115 80-120% Methyl tert-butyl ether (MTBE) 17.1 1.00 1 20.0 86 80-120% ug/L Naphthalene 16.0 5.00 20.0 ug/L 1 80 80-120% -----n-Propylbenzene 22.1 0.500 ug/L 1 20.0 110 80-120% 21.7 1.00 20.0 109 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 19.8 0.400 ug/L 1 20.0 99 80-120% 1,1,2,2-Tetrachloroethane 22.8 0.500 ug/L 20.0 114 80-120% 1 Tetrachloroethene (PCE) 19.6 0.4001 20.0 98 80-120% ug/L Toluene 20.9 1.00 20.0 104 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 20.6 2.00 ug/L 1 20.0 103 80-120% 1.2.4-Trichlorobenzene 190 2.00 20.0 95 80-120% ug/L 1 ------1,1,1-Trichloroethane 21.5 0.400 ug/L 1 20.0 108 80-120% 1,1,2-Trichloroethane 22.4 0.500 ug/L 1 20.0 112 80-120% ---Trichloroethene (TCE) 19.0 0.400ug/L 1 20.0 95 80-120% Trichlorofluoromethane 39.0 2.00 20.0 195 80-120% Q-56 ug/L 1 1,2,3-Trichloropropane 22.6 1.00 ug/L 1 20.0 113 80-120% 1,2,4-Trimethylbenzene 22.8 1.00 ug/L 1 20.0 114 80-120% 1,3,5-Trimethylbenzene 23.1 1.00 ug/L 1 20.0 116 80-120%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0144 - EPA 5030C							Wa	ter				
LCS (24E0144-BS1)			Prepared	: 05/03/24	10:00 Ana	lyzed: 05/03	/24 11:17					
Vinyl chloride	21.3		0.200	ug/L	1	20.0		106	80-120%			
m,p-Xylene	45.6		1.00	ug/L	1	40.0		114	80-120%			
o-Xylene	20.2		0.500	ug/L	1	20.0		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			88 %	80	-120 %		"					
Duplicate (24E0144-DUP1)			Prepared	: 05/03/24	11:47 Anal	lyzed: 05/03/	/24 22:34					
OC Source Sample: Non-SDG (A4)	D1697-28)					<u>-</u>						
Acetone	ND		100	ug/L	5		ND				30%	
Acrylonitrile	ND		10.0	ug/L	5		ND				30%	
Benzene	ND		1.00	ug/L	5		ND				30%	
Bromobenzene	ND		2.50	ug/L	5		ND				30%	
Bromochloromethane	ND		5.00	ug/L	5		ND				30%	
Bromodichloromethane	ND		5.00	ug/L	5		ND				30%	
Bromoform	ND		5.00	ug/L	5		ND				30%	
Bromomethane	ND		25.0	ug/L	5		ND				30%	
2-Butanone (MEK)	ND		50.0	ug/L	5		ND				30%	
n-Butylbenzene	ND		5.00	ug/L	5		ND				30%	
sec-Butylbenzene	ND		5.00	ug/L	5		ND				30%	
tert-Butylbenzene	ND		5.00	ug/L	5		ND				30%	
Carbon disulfide	ND		50.0	ug/L	5		ND				30%	
Carbon tetrachloride	ND		5.00	ug/L	5		ND				30%	
Chlorobenzene	ND		2.50	ug/L	5		ND				30%	
Chloroethane	ND		25.0	ug/L	5		ND				30%	
Chloroform	ND		5.00	ug/L	5		ND				30%	
Chloromethane	ND		25.0	ug/L	5		ND				30%	
2-Chlorotoluene	ND		5.00	ug/L	5		ND				30%	
4-Chlorotoluene	ND		5.00	ug/L	5		ND				30%	
Dibromochloromethane	ND		5.00	ug/L	5		ND				30%	
1,2-Dibromo-3-chloropropane	ND		25.0	ug/L	5		ND				30%	
1,2-Dibromoethane (EDB)	ND		2.50	ug/L	5		ND				30%	
Dibromomethane	ND		5.00	ug/L	5		ND				30%	
1,2-Dichlorobenzene	ND		2.50	ug/L	5		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam

55 SW Yamhill St, Ste 300 Project Number: 00464.027

Portland, OR 97209 Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0144 - EPA 5030C Water Duplicate (24E0144-DUP1) Prepared: 05/03/24 11:47 Analyzed: 05/03/24 22:34 QC Source Sample: Non-SDG (A4D1697-28) 1,3-Dichlorobenzene ND 2.50 ug/L 5 ND 30% ND 2.50 5 30% 1,4-Dichlorobenzene ug/L ND 5 Dichlorodifluoromethane ND 5.00 ug/L ND 30% 1,1-Dichloroethane ND 2.00 ug/L 5 ND 30% 1,2-Dichloroethane (EDC) ND 2.00 5 ND 30% ug/L ------Q-17 ND 2.00 5 1,1-Dichloroethene ug/L ND 30% 5 cis-1,2-Dichloroethene 70.0 2.00 ug/L 67.7 3 30% 2.00 5 30% trans-1,2-Dichloroethene ND ug/L ND ---5 1,2-Dichloropropane ND 2.50 ug/L ND 30% 1,3-Dichloropropane ND 5.00 ug/L 5 ND 30% 2,2-Dichloropropane ND 5.00 ug/L 5 ND 30% 1,1-Dichloropropene ND 5.00 5 30% ug/L ND 5 cis-1,3-Dichloropropene ND 5.00 ug/L ND 30% 5 trans-1,3-Dichloropropene ND 5.00 ND 30% ug/L 2.50 5 Ethylbenzene ND ug/L ND 30% Hexachlorobutadiene ND 25.0 ug/L 5 ND ___ 30% 2-Hexanone ND 50.0 ug/L 5 ND 30% ND 5.00 5 ND 30% Isopropylbenzene ug/L 4-Isopropyltoluene 5.00 5 30% ND ug/L ND Methylene chloride 50.0 5 ND ND 30% ug/L 4-Methyl-2-pentanone (MiBK) ND 50.0 5 30% ug/L ND Methyl tert-butyl ether (MTBE) ND 5.00 ug/L 5 ND ------30% Naphthalene ND 25.0 ug/L 5 ND 30% ND 5 30% n-Propylbenzene 2.50 ug/L ND ---ND 5.00 5 30% Stvrene ug/L ND 2.00 30% 1,1,1,2-Tetrachloroethane ND 5 ND ug/L 1,1,2,2-Tetrachloroethane ND 2.50 ug/L 5 ND 30% ug/L Tetrachloroethene (PCE) 5 30% 3.25 2.00 3.35 3 Toluene ND 5.00 ug/L 5 ND 30% 1.2.3-Trichlorobenzene ND 10.0 5 ND 30% ug/L ---1,2,4-Trichlorobenzene ND 10.0 ug/L 5 ND 30% 1,1,1-Trichloroethane 2.00 5 30% ND ND ug/L ---1,1,2-Trichloroethane ND 2.50 ug/L 5 ND 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0144 - EPA 5030C							Wa	ter				
Ouplicate (24E0144-DUP1)			Prepared	1: 05/03/24	11:47 Anal	lyzed: 05/03	/24 22:34					
QC Source Sample: Non-SDG (A4	D1697-28)											
Trichloroethene (TCE)	422		2.00	ug/L	5		408			3	30%	
Trichlorofluoromethane	ND		10.0	ug/L	5		ND				30%	
1,2,3-Trichloropropane	ND		5.00	ug/L	5		ND				30%	
1,2,4-Trimethylbenzene	ND		5.00	ug/L	5		ND				30%	
1,3,5-Trimethylbenzene	ND		5.00	ug/L	5		ND				30%	
Vinyl chloride	ND		1.00	ug/L	5		ND				30%	
m,p-Xylene	ND		5.00	ug/L	5		ND				30%	
o-Xylene	ND		2.50	ug/L	5		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 116 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A4	D1741-08)											
EPA 8260D												
Acetone	48.6		20.0	ug/L	1	40.0	ND	122	39-160%			
Acrylonitrile	23.7		2.00	ug/L	1	20.0	ND	118	63-135%			
Benzene	21.9		0.200	ug/L	1	20.0	ND	109	79-120%			
Bromobenzene	19.5		0.500	ug/L	1	20.0	ND	97	80-120%			
Bromochloromethane	26.7		1.00	ug/L	1	20.0	ND	133	78-123%			Q-5
Bromodichloromethane	23.5		1.00	ug/L	1	20.0	ND	117	79-125%			
Bromoform	17.2		1.00	ug/L	1	20.0	ND	86	66-130%			
Bromomethane	28.6		5.00	ug/L	1	20.0	ND	143	53-141%			Q-5
2-Butanone (MEK)	49.1		10.0	ug/L	1	40.0	ND	123	56-143%			
n-Butylbenzene	24.3		1.00	ug/L	1	20.0	ND	121	75-128%			
sec-Butylbenzene	23.6		1.00	ug/L	1	20.0	ND	118	77-126%			
tert-Butylbenzene	21.9		1.00	ug/L	1	20.0	ND	109	78-124%			
Carbon disulfide	22.3		10.0	ug/L	1	20.0	ND	112	64-133%			
Carbon tetrachloride	22.1		1.00	ug/L	1	20.0	ND	111	72-136%			
Chlorobenzene	21.0		0.500	ug/L	1	20.0	ND	105	80-120%			
Chloroethane	47.4		5.00	ug/L	1	20.0	ND	237	60-138%			Q-:
Chloroform	22.2		1.00	ug/L	1	20.0	ND	111	79-124%			
Chloromethane	20.9		5.00	ug/L	1	20.0	ND	105	50-139%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0144 - EPA 5030C Water Matrix Spike (24E0144-MS1) Prepared: 05/03/24 11:47 Analyzed: 05/03/24 16:11 QC Source Sample: Non-SDG (A4D1741-08) 2-Chlorotoluene 20.3 1.00 ug/L 1 20.0 ND 102 79-122% 4-Chlorotoluene 22.0 1.00 ug/L 1 20.0 ND 110 78-122% Dibromochloromethane 19.0 1.00 ug/L 1 20.0 ND 95 74-126% 1,2-Dibromo-3-chloropropane 17.9 5.00 ug/L 1 20.0 ND 90 62-128% 1,2-Dibromoethane (EDB) 21.2 0.500 1 20.0 ND 106 77-121% ug/L 1.00 Dibromomethane 23.6 ug/L 1 20.0 ND 118 79-123% 1,2-Dichlorobenzene 21.4 0.500ug/L 1 20.0 ND 107 80-120% 21.6 0.5001,3-Dichlorobenzene ug/L 1 20.0 ND 108 80-120% 1,4-Dichlorobenzene 21.2 0.500 ug/L 1 20.0 ND 106 79-120% Dichlorodifluoromethane 22.3 1.00 ug/L 1 20.0 ND 112 32-152% 1,1-Dichloroethane 23.2 0.400 ug/L 1 20.0 ND 116 77-125% 1,2-Dichloroethane (EDC) 0.400 O-54d 73-128% 24.6 ug/L 1 20.0 ND 123 0.400 Q-01 1,1-Dichloroethene 26.5 ug/L 1 20.0 ND 132 71-131% cis-1,2-Dichloroethene 22.9 0.400 20.0 ND ug/L 1 115 78-123% trans-1,2-Dichloroethene 0.400 22.2 ug/L 1 20.0 ND 111 75-124% 109 1,2-Dichloropropane 21.8 0.500 ug/L 1 20.0 ND 78-122% ___ 1,3-Dichloropropane 22.2 1.00 ug/L 1 20.0 ND 111 80-120% 18.2 1.00 20.0 ND 91 60-139% 2,2-Dichloropropane ug/L 1 79-125% 1,1-Dichloropropene 24.2 1.00 ug/L 1 20.0 ND 121 1.00 cis-1,3-Dichloropropene 17.9 20.0 ND 89 75-124% ug/L 1 18.4 1.00 92 73-127% trans-1,3-Dichloropropene ug/L 20.0 ND Ethylbenzene 0.500 20.0 22.5 --ug/L 1 ND 113 79-121% Hexachlorobutadiene 19.8 5.00 ug/L 20.0 ND 99 66-134% 42.3 10.0 2-Hexanone ug/L 1 40.0 ND 106 57-139% ------Isopropylbenzene 21.8 1.00 ND 72-131% ug/L 1 20.0 109 1.00 ND 4-Isopropyltoluene 21.0 20.0 105 77-127% ug/L 1 Methylene chloride 20.6 10.0 ug/L 20.0 ND 103 74-124% ug/L 49.1 10.0 4-Methyl-2-pentanone (MiBK) 1 40.0 ND 123 67-130% ------Methyl tert-butyl ether (MTBE) 17.5 1.00 ug/L 1 20.0 ND 88 71-124% Naphthalene 16.4 5.00 20.0 ND 82 61-128% ug/L 1 n-Propylbenzene 23.4 0.500 ug/L 1 20.0 ND 117 76-126% 1.00 Styrene 21.9 20.0 ND 110 78-123% ug/L 1 ---1,1,1,2-Tetrachloroethane 20.2 0.400ug/L 1 20.0 ND 101 78-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 38 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting % REC RPD Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0144 - EPA 5030C Water Matrix Spike (24E0144-MS1) Prepared: 05/03/24 11:47 Analyzed: 05/03/24 16:11 QC Source Sample: Non-SDG (A4D1741-08) 1,1,2,2-Tetrachloroethane 22.9 0.500 ug/L 1 20.0 ND 114 71-121% 20.0 Tetrachloroethene (PCE) 200 0.400 Е ug/L 1 179 107 74-129% 80-121% Toluene 21.4 1.00 ug/L 1 20.0 ND 107 1,2,3-Trichlorobenzene 20.5 2.00 ug/L 1 20.0 ND 103 69-129% 1,2,4-Trichlorobenzene 19.3 2.00 ug/L 1 20.0 ND 97 69-130% 1,1,1-Trichloroethane 23.0 0.40020.0 74-131% ug/L 1 ND 115 0.500 1,1,2-Trichloroethane 22.6 ug/L 1 20.0 ND 113 80-120% Trichloroethene (TCE) 20.0 0.400 20.0 79-123% ug/L 1 ND 100 Q-54i Trichlorofluoromethane 41.6 2.00 ug/L 1 20.0 ND 208 65-141% 1,2,3-Trichloropropane 22.4 1.00 ug/L 1 20.0 ND 112 73-122% 1,2,4-Trimethylbenzene 23.3 1.00 ug/L 1 20.0 ND 116 76-124% 1,3,5-Trimethylbenzene 1.00 23.9 20.0 75-124% ug/L 1 ND 120 Vinyl chloride 23.6 0.200 20.0 58-137% ug/L ND 118 1.00 m,p-Xylene 48.0 ug/L 40.0 ND 120 80-121% 1 o-Xylene 0.500 78-122% 21.0 ug/L ND 105 Surr: 1,4-Difluorobenzene (Surr) 99 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 89 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0053 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0053-BLK1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 12:33 EPA 8270E ND 0.0200ug/L Acenaphthene ND 0.0200 ug/L Acenaphthylene ---1 ---Anthracene ND 0.0200 ug/L 1 Benz(a)anthracene ND 0.0200 ug/L 1 Benzo(a)pyrene ND 0.0300 ug/L ug/L ND 0.0300 Benzo(b)fluoranthene 1 ---Benzo(k)fluoranthene ND 0.0300 ug/L 0.0200 Benzo(g,h,i)perylene ND ug/L 1 ---Chrysene ND 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.0200 ug/L 1 Fluoranthene ND 0.0200 ug/L 1 ND 0.0200 ug/L Fluorene 1 ---------0.0200 Indeno(1,2,3-cd)pyrene ND ug/L 1-Methylnaphthalene ND 0.0400 Q-30 ug/L 1 Q-30 2-Methylnaphthalene ND 0.0400 ug/L 1 Naphthalene ND 0.0400 ug/L 1 Q-30 ---------------Phenanthrene ND 0.0200ug/L 1 Pyrene ND 0.0200 ug/L 1 ------------Carbazole ND 0.0300 ug/L 1 ---Dibenzofuran ND 0.0200 ug/L 1 2-Chlorophenol ND 0.100 ug/L 1 ug/L 4-Chloro-3-methylphenol ND 0.200 1 2,4-Dichlorophenol ND 0.100 ug/L 2,4-Dimethylphenol ND 0.500 ug/L 1 2,4-Dinitrophenol 0.500 ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.500 ug/L 1 2-Methylphenol ND 0.0500ug/L 1 0.0500 3+4-Methylphenol(s) ND ug/L 1 ------2-Nitrophenol ND 0.200 ug/L 1 0.200 4-Nitrophenol ND ug/L 1 Pentachlorophenol (PCP) ND 0.200 ug/L 1 Phenol ND 0.400 ug/L 1 2,3,4,6-Tetrachlorophenol ND 0.100 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0053 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0053-BLK1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 12:33 2,3,5,6-Tetrachlorophenol ND 0.100 ug/L 0.100 2,4,5-Trichlorophenol ND ug/L 1 ---------2,4,6-Trichlorophenol ND 0.100 ug/L 1 Bis(2-ethylhexyl)phthalate ND 0.400 ug/L 1 Butyl benzyl phthalate ND 0.400 ug/L 1 Diethylphthalate ND 0.400 ug/L 1 0.400 Dimethylphthalate ND ug/L 1 ND 0.400 Di-n-butylphthalate ug/L 1 0.400 Di-n-octyl phthalate ND ug/L 1 N-Nitrosodimethylamine ND 0.0500 ug/L 1 N-Nitroso-di-n-propylamine ND 0.0500 ug/L 1 0.0500 N-Nitrosodiphenylamine ND ug/L 1 ND 0.0500 Bis(2-Chloroethoxy) methane ug/L 1 ------Bis(2-Chloroethyl) ether ND 0.0500ug/L 1 B-02 2,2'-Oxybis(1-Chloropropane) ND 0.0500 ug/L 1 ---Hexachlorobenzene ND 0.0200ug/L Hexachlorobutadiene ND 0.0500 O-30 ug/L 1 Hexachlorocyclopentadiene ND 0.100 ug/L 1 0.0500 Q-30 Hexachloroethane ND ug/L 1 ------2-Chloronaphthalene ND 0.0200ug/L Q-30 1,2,4-Trichlorobenzene ND 0.0500 Q-30 ug/L 1 ------4-Bromophenyl phenyl ether ND 0.0500 ug/L 1 4-Chlorophenyl phenyl ether ND 0.0500 ug/L Q-30 1 Aniline ND 0.100 ug/L ND 0.0500 4-Chloroaniline ug/L 1 ---------------2-Nitroaniline ND 0.400 ug/L 3-Nitroaniline ND 0.400 ug/L 1 ------4-Nitroaniline ND 0.400 ug/L 1 ug/L Nitrobenzene ND 0.200 1 ---2,4-Dinitrotoluene ND 0.200 ug/L 1 2,6-Dinitrotoluene ND 0.200 ug/L 1 Benzoic acid ND 2.50 ug/L 1 Benzyl alcohol ND 0.200 ug/L 1 Isophorone ND 0.0500ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0053 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Blank (24E0053-BLK1)			Prepared	: 05/02/24	04:55 Ana	lyzed: 05/02	/24 12:33					
Azobenzene (1,2-DPH)	ND		0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND		0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND		1.00	ug/L	1							Q-5
1,2-Dinitrobenzene	ND		0.500	ug/L	1							
1,3-Dinitrobenzene	ND		0.500	ug/L	1							
1,4-Dinitrobenzene	ND		0.500	ug/L	1							
Pyridine	ND		0.200	ug/L	1							
1,2-Dichlorobenzene	ND		0.0500	ug/L	1							Q-3
1,3-Dichlorobenzene	ND		0.0500	ug/L	1							Q-3
1,4-Dichlorobenzene	ND		0.0500	ug/L	1							Q-3
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 75 %	Limits: 44	4-120 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			64 %	44	1-120 %		"					
Phenol-d6 (Surr)			27 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			98 %	50)-134 %		"					
2-Fluorophenol (Surr)			39 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			80 %	43	B-140 %		"					
LCS (24E0053-BS1)			Prepared	: 05/02/24	04:55 Ana	lyzed: 05/02	/24 13:08					
EPA 8270E												
Acenaphthene	1.87		0.0800	ug/L	4	4.00		47	47-122%			
Acenaphthylene	2.38		0.0800	ug/L	4	4.00		60	41-130%			
Anthracene	3.41		0.0800	ug/L	4	4.00		85	57-123%			
Benz(a)anthracene	3.71		0.0800	ug/L	4	4.00		93	58-125%			
Benzo(a)pyrene	3.86		0.120	ug/L	4	4.00		96	54-128%			
Benzo(b)fluoranthene	3.92		0.120	ug/L	4	4.00		98	53-131%			
Benzo(k)fluoranthene	3.73		0.120	ug/L	4	4.00		93	57-129%			
Benzo(g,h,i)perylene	3.84		0.0800	ug/L	4	4.00		96	50-134%			
Chrysene	3.60		0.0800	ug/L	4	4.00		90	59-123%			
Dibenz(a,h)anthracene	3.59		0.0800	ug/L	4	4.00		90	51-134%			
Fluoranthene	3.87		0.0800	ug/L	4	4.00		97	57-128%			
Fluorene	2.58		0.0800	ug/L	4	4.00		65	52-124%			
Indeno(1,2,3-cd)pyrene	3.47		0.0800	ug/L	4	4.00		87	52-134%			
1-Methylnaphthalene	1.46		0.160	ug/L	4	4.00		36	41-120%			Q-3
2-Methylnaphthalene	1.39		0.160	ug/L	4	4.00		35	40-121%			O-3

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0053 - EPA 3510C (Acid/Base Neutral) Water LCS (24E0053-BS1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 13:08 1.47 0.160 4.00 37 O - 30Naphthalene ug/L 40-121% 0.0800 79 Phenanthrene 3.14 ug/L 4 4.00 59-120% ------Pyrene 3.83 0.0800ug/L 4 4.00 96 57-126% Carbazole 4.00 0.120 ug/L 4 4.00 100 60-122% 4 Dibenzofuran 2.28 0.0800ug/L 4.00 57 53-120% 4 2-Chlorophenol 2.62 0.400 ug/L 4.00 65 38-120% 0.8004 4-Chloro-3-methylphenol 3.53 --ug/L 4.00 88 52-120% 0.400 4 Q-41 2,4-Dichlorophenol 3.30 ug/L 4.00 83 47-121% 2.00 4 2,4-Dimethylphenol 2.28 ug/L 4.00 57 31-124% 2,4-Dinitrophenol 4.99 2.00 ug/L 4 4.00 125 23-143% Q-41 4 Q-41 4,6-Dinitro-2-methylphenol 4.41 2.00 4.00 110 44-137% ug/L 2.43 0.200 4 2-Methylphenol ug/L 4.00 61 30-120% 29-120% 3+4-Methylphenol(s) 2.47 0.200 4 4.00 ug/L 62 2-Nitrophenol 3.21 0.800ug/L 4 4.00 80 47-123% 4 4-Nitrophenol 1.95 0.800 4.00 49 10-120% ug/L Pentachlorophenol (PCP) 4.03 0.800 ug/L 4 4.00 101 35-138% Phenol 1.13 0.800 4 ug/L 4.00 28 10-120% 2,3,4,6-Tetrachlorophenol 3.60 0.400 4 90 50-128% ug/L 4.00 0.400 4 2,3,5,6-Tetrachlorophenol 3.93 4.00 98 ug/L 50-121% ---2,4,5-Trichlorophenol 4.12 0.400 ug/L 4 4.00 103 53-123% Q-41 2,4,6-Trichlorophenol 3.68 0.400 4 4 00 92 50-125% Q-41 ug/L ---Bis(2-ethylhexyl)phthalate 3.80 1.60 ug/L 4 4.00 95 55-135% Butyl benzyl phthalate 3.86 1.60 ug/L 4 4.00 97 53-134% Diethylphthalate 3.59 1.60 ug/L 4 4.00 90 56-125% 1.60 4 4.00 89 45-127% Dimethylphthalate 3.56 ug/L ---Di-n-butylphthalate 4.10 1.60 ug/L 4 4.00 103 59-127% Di-n-octyl phthalate 4.00 1.60 4 4 00 100 51-140% ug/L ------N-Nitrosodimethylamine 1.72 0.200 ug/L 4 4.00 43 19-120% N-Nitroso-di-n-propylamine 2.96 0.200 ug/L 4 4.00 74 49-120% ---N-Nitrosodiphenylamine 3.11 0.200 ug/L 4 4.00 78 51-123% Bis(2-Chloroethoxy) methane 2.85 0.200 4 4.00 71 48-120% ug/L B-02 Bis(2-Chloroethyl) ether 2.60 0.200 ug/L 4 4.00 65 43-120% 2,2'-Oxybis(1-Chloropropane) 2.12 0.200 ug/L 4 4.00 53 41-120% Hexachlorobenzene 0.08002.93 ug/L 4 4.00 73 53-125%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile	3		· , · ·						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 24E0053 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
CS (24E0053-BS1)			Prepared	1: 05/02/24	04:55 Anal	yzed: 05/02	/24 13:08					
Hexachlorobutadiene	0.670		0.200	ug/L	4	4.00		17	22-124%			Q
Hexachlorocyclopentadiene	0.642		0.400	ug/L	4	4.00		16	10-127%			Q
Hexachloroethane	0.703		0.200	ug/L	4	4.00		18	21-120%			Q
2-Chloronaphthalene	1.54		0.0800	ug/L	4	4.00		38	40-120%			Q
1,2,4-Trichlorobenzene	0.948		0.200	ug/L	4	4.00		24	29-120%			Q
4-Bromophenyl phenyl ether	2.46		0.200	ug/L	4	4.00		61	55-124%			
4-Chlorophenyl phenyl ether	1.94		0.200	ug/L	4	4.00		49	53-121%			Q
Aniline	2.10		0.400	ug/L	4	4.00		53	10-120%			
4-Chloroaniline	2.61		0.200	ug/L	4	4.00		65	33-120%			
2-Nitroaniline	3.44		1.60	ug/L	4	4.00		86	55-127%			
3-Nitroaniline	3.19		1.60	ug/L	4	4.00		80	41-128%			Q
4-Nitroaniline	3.61		1.60	ug/L	4	4.00		90	25-120%			
Nitrobenzene	2.58		0.800	ug/L	4	4.00		64	45-121%			
2,4-Dinitrotoluene	3.45		0.800	ug/L	4	4.00		86	57-128%			
2.6-Dinitrotoluene	3.24		0.800	ug/L	4	4.00		81	57-124%			
Benzoic acid	3.63		2.00	ug/L	4	8.00		45	10-120%			Q
Benzyl alcohol	2.67		0.800	ug/L	4	4.00		67	31-120%			Ì
Isophorone	3.08		0.200	ug/L	4	4.00		77	42-124%			
Azobenzene (1,2-DPH)	2.62		0.200	ug/L	4	4.00		66	61-120%			
Bis(2-Ethylhexyl) adipate	3.79		2.00	ug/L	4	4.00		95	63-121%			
3,3'-Dichlorobenzidine	10.8		4.00	ug/L	4	8.00		135	27-129%			Q-29, Q-3
3,5 Bremoroccizianie	10.0		1.00	ug/ L		0.00		100	2, 12, 70			Q
1,2-Dinitrobenzene	3.26		2.00	ug/L	4	4.00		81	59-120%			
1,3-Dinitrobenzene	3.48		2.00	ug/L	4	4.00		87	49-128%			
1,4-Dinitrobenzene	3.25		2.00	ug/L	4	4.00		81	54-120%			
Pyridine	1.72		0.800	ug/L	4	4.00		43	10-120%			
1,2-Dichlorobenzene	0.900		0.200	ug/L	4	4.00		23	32-120%			Q
1,3-Dichlorobenzene	0.805		0.200	ug/L	4	4.00		20	28-120%			Q
1,4-Dichlorobenzene	0.845		0.200	ug/L	4	4.00		21	29-120%			Q
arr: Nitrobenzene-d5 (Surr)		Rec	overy: 76 %	Limits: 44	4-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			70 %	44	-120 %		"					
Phenol-d6 (Surr)			30 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			103 %		134 %		"					
2-Fluorophenol (Surr)			42 %		-120 %		"					
2,4,6-Tribromophenol (Surr)			100 %		-140 %		,,					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam 55 SW Yamhill St, Ste 300 Project Number: 00464.027 Portland, OR 97209 Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Water Batch 24E0053 - EPA 3510C (Acid/Base Neutral) LCS Dup (24E0053-BSD1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 13:42 Q-19 EPA 8270E 2.09 30% Acenaphthene 0.0800ug/L 4 4.00 52 47-122% 12 Acenaphthylene 2.66 0.0800 ug/L 4 4.00 66 41-130% 11 30% ---92 Anthracene 3.70 0.0800ug/L 4 4.00 57-123% 8 30% Benz(a)anthracene 3.86 0.0800 4 4.00 96 58-125% 4 30% ug/L Benzo(a)pyrene 4.01 0.120 ug/L 4 4.00 100 54-128% 4 30% Benzo(b)fluoranthene 4.09 0.120 ug/L 4 4.00 102 53-131% 4 30% 0.120Benzo(k)fluoranthene 4 4.03 ug/L 4.00 101 57-129% 8 30% Benzo(g,h,i)perylene 50-134% 4.10 0.0800 ug/L 4 4.00 103 7 30% 4 94 5 Chrysene 3.77 0.0800ug/L 4.00 59-123% 30% Dibenz(a,h)anthracene 3.81 0.08004 4.00 95 51-134% 6 30% ug/L Fluoranthene 4.11 0.0800ug/L 4 4.00 103 57-128% 6 30% Fluorene 2.94 0.0800ug/L 4 4.00 74 52-124% 13 30% 4 Indeno(1,2,3-cd)pyrene 3.72 0.0800 4.00 93 52-134% 7 30% ug/L 4 1-Methylnaphthalene 1.71 0.160 ug/L 4.00 43 41-120% 16 30% 2-Methylnaphthalene 0.160 4 40-121% 30% 1.64 ug/L 4.00 41 16 4 Naphthalene 1.70 0.160 ug/L 4.00 42 40-121% 14 30% 0.08004 Phenanthrene 3.49 ug/L 4.00 87 59-120% 11 30% Pyrene 4.05 0.0800ug/L 4 4.00 101 57-126% 6 30% 4 4.26 4.00 106 60-122% 6 30% Carbazole 0.120 ug/L 0.0800 4 Dibenzofuran 2.59 ug/L 4.00 65 53-120% 13 30% 2-Chlorophenol 2.91 0.400 ug/L 4 4.00 73 38-120% 10 30% 4-Chloro-3-methylphenol 0.8004 100 52-120% 4.00 ug/L 4.00 12 30% 4 Q-41 0.400 96 47-121% 15 30% 2,4-Dichlorophenol 3.84 ug/L 4.00 2,4-Dimethylphenol 2.51 2.00 ug/L 4 4.00 63 31-124% 10 30% 2,4-Dinitrophenol 2.00 4 30% Q-41 5.53 4.00 138 23-143% 10 ug/L 4,6-Dinitro-2-methylphenol 4.73 2.00 4 118 44-137% 7 30% Q-41 ug/L 4.00 4 2-Methylphenol 2.74 0.200 ug/L 4.00 69 30-120% 12 30% 3+4-Methylphenol(s) 2.81 0.200 4 4.00 70 29-120% 13 30% ug/L 4 30% 2-Nitrophenol 0.8004.00 90 47-123% 12 3.61 ug/L 4-Nitrophenol 2.01 0.800ug/L 4 4.00 50 10-120% 3 30% Pentachlorophenol (PCP) 4.34 0.800 ug/L 4 4.00 109 35-138% 8 30% Phenol 1.26 0.800 ug/L 4 4.00 31 10-120% 11 30% 4.10 0.400 4 4.00 50-128% 30%

Apex Laboratories

2,3,4,6-Tetrachlorophenol

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

13

103

Page 45 of 73 Philip Nerenberg, Lab Director

ug/L

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source % REC Analyte Result Units Dilution RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0053 - EPA 3510C (Acid/Base Neutral) Water LCS Dup (24E0053-BSD1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 13:42 Q-19 2,3,5,6-Tetrachlorophenol 4.37 0.400 4.00 109 30% ug/L 50-121% 11 0.400 Q-41 2,4,5-Trichlorophenol 4.65 ug/L 4 4.00 116 53-123% 12 30% ---0.400 Q-41 2,4,6-Trichlorophenol 4.21 ug/L 4 4.00 105 50-125% 13 30% Bis(2-ethylhexyl)phthalate 3.98 1.60 ug/L 4 4.00 100 55-135% 5 30% 99 30% Butyl benzyl phthalate 3.98 1.60 ug/L 4 4.00 53-134% 3 4 99 Diethylphthalate 3.97 1.60 ug/L 4.00 56-125% 10 30% 4 Dimethylphthalate 4.03 1.60 ug/L 4.00 101 45-127% 12 30% 4.29 4 Di-n-butylphthalate 1.60 ug/L 4.00 107 59-127% 5 30% 1.60 4 Di-n-octyl phthalate 4.17 ug/L 4.00 104 51-140% 4 30% N-Nitrosodimethylamine 1.92 0.200 ug/L 4 4.00 48 19-120% 11 30% 4 30% N-Nitroso-di-n-propylamine 3.49 0.2004.00 87 49-120% ug/L 16 0.200 4 N-Nitrosodiphenylamine 3.51 ug/L 4.00 88 51-123% 12 30% Bis(2-Chloroethoxy) methane 3.27 0.200 4 4.00 82 48-120% 30% --ug/L 14 Bis(2-Chloroethyl) ether 2.95 0.200 ug/L 4 4.00 74 43-120% 13 30% B-02 4 2,2'-Oxybis(1-Chloropropane) 2.38 0.200 4.00 60 41-120% 12 30% ug/L Hexachlorobenzene 3.21 0.0800 ug/L 4 4.00 80 53-125% 9 30% Hexachlorobutadiene 0.911 0.200 4 23 30% ug/L 4.00 22-124% 30 Hexachlorocyclopentadiene 0.797 0.400 4 20 10-127% 22 30% Q-41 ug/L 4.00 4 Hexachloroethane 0.923 0.200 4.00 23 21-120% 2.7 30% ug/L 2-Chloronaphthalene 1.76 0.0800 ug/L 4 4.00 44 40-120% 13 30% 1,2,4-Trichlorobenzene 1.17 0.200 4 4 00 29 29-120% 21 30% ug/L 4-Bromophenyl phenyl ether 2.74 0.200 ug/L 4 4.00 69 55-124% 11 30% 4-Chlorophenyl phenyl ether 2.21 0.200 ug/L 4 4.00 55 53-121% 13 30% Aniline 2.38 0.400ug/L 4 4.00 60 10-120% 13 30% 4-Chloroaniline 3.03 0.200 4 4.00 76 33-120% 15 30% ug/L ---2-Nitroaniline 4.03 1.60 ug/L 4 4.00 101 55-127% 16 30% 3-Nitroaniline 3.62 1.60 4 4 00 91 41-128% 13 30% Q-31 ug/L 4-Nitroaniline 3.95 1.60 ug/L 4 4.00 99 25-120% 9 30% Nitrobenzene 2.95 0.800 ug/L 4 4.00 74 45-121% 14 30% ---2,4-Dinitrotoluene 3.85 0.800ug/L 4 4.00 96 57-128% 11 30% 2,6-Dinitrotoluene 3.73 0.800 4 4.00 93 57-124% 14 30% ug/L Q-41 Benzoic acid 3.41 2.00 ug/L 4 8.00 43 10-120% 6 30% Benzyl alcohol 3.09 0.800 ug/L 4 4.00 77 31-120% 15 30% Isophorone 3.58 0.200 ug/L 4 4.00 89 42-124% 15 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0053 - EPA 3510C (Acid/Base Neutral) Water LCS Dup (24E0053-BSD1) Prepared: 05/02/24 04:55 Analyzed: 05/02/24 13:42 Q-19 Azobenzene (1,2-DPH) 2.99 0.200 ug/L 4.00 75 61-120% 30% 13 98 4 Bis(2-Ethylhexyl) adipate 3.93 2.00 ug/L 4 4.00 63-121% 30% Q-29, Q-31, 3,3'-Dichlorobenzidine 10.8 4.00 ug/L 4 8.00 136 27-129% 0.2 30% Q-52 1,2-Dinitrobenzene 3.77 2.00 ug/L 4 4.00 94 59-120% 14 30% 1.3-Dinitrobenzene 4.00 2.00 4 30% ug/L 4 00 100 49-128% 14 1,4-Dinitrobenzene 3.77 2.00 ug/L 4 4.00 94 54-120% 15 30% Pyridine 2.01 0.800 ug/L 4 4.00 50 10-120% 30% 16 Q-30 1,2-Dichlorobenzene 1.13 0.200 ug/L 4 4.00 28 32-120% 22 30% 1,3-Dichlorobenzene 1.03 0.200 4 4.00 26 28-120% 25 30% Q-30 ug/L 1,4-Dichlorobenzene 1.07 0.200 ug/L 4 4.00 27 29-120% 24 30% Q-30 Surr: Nitrobenzene-d5 (Surr) Recovery: 85 % Limits: 44-120 % Dilution: 4x 2-Fluorobiphenyl (Surr) 77 % 44-120 % Phenol-d6 (Surr) 32 % 10-133 % p-Terphenyl-d14 (Surr) 104 % 50-134 % 2-Fluorophenol (Surr) 45 % 19-120 % 2,4,6-Tribromophenol (Surr) 106 % 43-140 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0261 - EPA 3015A							Wa	ter				
Blank (24E0261-BLK1)			Prepared	: 05/07/24	14:57 Anal	lyzed: 05/08	/24 06:33					
EPA 6020B												
Aluminum	ND		50.0	ug/L	1							
Antimony	ND		1.00	ug/L	1							
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Beryllium	ND		0.200	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Calcium	ND		600	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Copper	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Magnesium	ND		150	ug/L	1							
Manganese	ND		1.00	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Molybdenum	ND		1.00	ug/L	1							
Nickel	ND		2.00	ug/L	1							В
Potassium	ND		100	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Sodium	ND		100	ug/L	1							
Thallium	ND		0.200	ug/L	1							
Vanadium	ND		2.00	ug/L	1							
Zinc	ND		4.00	ug/L	1							
Blank (24E0261-BLK2)			Prenared	. 05/07/24	14·57 Anal	lyzed: 05/08	/24 14:01					
EPA 6020B			1100		11107 11114	., 200. 00. 00.	2.1					
Boron	ND		10.0	ug/L	1							
Lithium	ND		5.00	ug/L	1							
Strontium	ND ND		5.00	ug/L ug/L	1							
Suonaum	1110		5.00	ug/L	1							
LCS (24E0261-BS1)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 06:39					
EPA 6020B												
Aluminum	3100		50.0	ug/L	1	2780		112	80-120%			
Antimony	29.2		1.00	ug/L	1	27.8		105	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0261 - EPA 3015A							Wa	ter				
LCS (24E0261-BS1)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 06:39					
Arsenic	59.1		1.00	ug/L	1	55.6		106	80-120%			
Barium	60.9		2.00	ug/L	1	55.6		110	80-120%			
Beryllium	28.2		0.200	ug/L	1	27.8		102	80-120%			
Cadmium	58.4		0.200	ug/L	1	55.6		105	80-120%			
Chromium	59.2		2.00	ug/L	1	55.6		107	80-120%			
Copper	61.2		2.00	ug/L	1	55.6		110	80-120%			
Lead	58.0		0.200	ug/L	1	55.6		104	80-120%			
Magnesium	3220		150	ug/L	1	2780		116	80-120%			
Manganese	59.8		1.00	ug/L	1	55.6		108	80-120%			
Mercury	1.13		0.0800	ug/L	1	1.11		101	80-120%			
Molybdenum	29.6		1.00	ug/L	1	27.8		107	80-120%			
Nickel	65.0		2.00	ug/L	1	55.6		117	80-120%			B-0
Potassium	3180		100	ug/L	1	2780		114	80-120%			
Selenium	29.0		1.00	ug/L	1	27.8		104	80-120%			
Silver	29.9		0.200	ug/L	1	27.8		107	80-120%			
Sodium	3120		100	ug/L	1	2780		112	80-120%			
Thallium	28.8		0.200	ug/L	1	27.8		104	80-120%			
Vanadium	58.4		2.00	ug/L	1	55.6		105	80-120%			
Zinc	60.0		4.00	ug/L	1	55.6		108	80-120%			
LCS (24E0261-BS2)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 14:06					
EPA 6020B			<u> </u>			·						
Boron	223		10.0	ug/L	1	222		100	80-120%			
Lithium	220		5.00	ug/L	1	222		99	80-120%			
Strontium	223		5.00	ug/L	1	222		101	80-120%			
LCS (24E0261-BS3)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/09	/24 02:59					
EPA 6020B												
Calcium	3330		600	ug/L	1	2780		120	80-120%			Q-1
Duplicate (24E0261-DUP1)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 07:46					
QC Source Sample: Non-SDG (A	ID1728-01)											
Aluminum	ND		50.0	ug/L	1		ND				20%	
Antimony	ND		1.00	ug/L	1		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0261 - EPA 3015A							Wat	er				
Ouplicate (24E0261-DUP1)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 07:46					
QC Source Sample: Non-SDG (A4	D1728-01)											
Arsenic	2.22		1.00	ug/L	1		2.24			1	20%	
Barium	268		2.00	ug/L	1		267			0.1	20%	
Beryllium	ND		0.200	ug/L	1		ND				20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		ND				20%	
Copper	ND		2.00	ug/L	1		ND				20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Molybdenum	ND		1.00	ug/L	1		ND				20%	
Nickel	ND		2.00	ug/L	1		2.09			***	20%	B-0
Potassium	19000		100	ug/L	1		18800			0.6	20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
Thallium	ND		0.200	ug/L	1		ND				20%	
Vanadium	ND		2.00	ug/L	1		ND				20%	
Zinc	ND		4.00	ug/L	1		ND				20%	
Duplicate (24E0261-DUP2)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 09:40					
QC Source Sample: Non-SDG (A4	D1728-01)											
Beryllium	ND		2.00	ug/L	10		ND				20%	R-04,Q-1
Magnesium	77100		1500	ug/L	10		73600			5	20%	Q-1
Manganese	4290		10.0	ug/L	10		4220			1	20%	Q-1
Sodium	447000		1000	ug/L	10		440000			2	20%	Q-1
Ouplicate (24E0261-DUP3)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	/24 14:26					
QC Source Sample: Non-SDG (A4	D1728-01)		1			<u>, </u>						
Boron	886		100	ug/L	10		851			4	20%	
Lithium	ND		50.0	ug/L ug/L	10		ND				20%	R-0
Strontium	1430		50.0	ug/L ug/L	10		1420			0.7	20%	10-0
	1100		20.0	ug/L	10		1 120			0.7	2070	
Duplicate (24E0261-DUP4)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/09	/24 12:13					
QC Source Sample: Non-SDG (A4	D1728-01RI	E2)										

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevemberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			iotai M	etais by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0261 - EPA 3015A							Wat	ter				
Duplicate (24E0261-DUP4)			Prepared	: 05/07/24	14:57 Anal	yzed: 05/09	/24 12:13					
QC Source Sample: Non-SDG (A41	D1728-01RE	<u>2)</u>										
Calcium	198000		6000	ug/L	10		179000			10	20%	Q-1
Matrix Spike (24E0261-MS1)			Prepared	: 05/07/24	14:57 Anal	yzed: 05/08	/24 08:07					
QC Source Sample: Non-SDG (A41	01728-02)											
EPA 6020B												
Aluminum	3320		50.0	ug/L	1	2780	75.8	117	75-125%			
Antimony	29.5		1.00	ug/L	1	27.8	ND	106	75-125%			
Arsenic	66.0		1.00	ug/L	1	55.6	5.47	109	75-125%			
Barium	174		2.00	ug/L	1	55.6	111	113	75-125%			
Cadmium	58.5		0.200	ug/L	1	55.6	ND	105	75-125%			
Chromium	63.8		2.00	ug/L	1	55.6	3.05	109	75-125%			
Copper	57.6		2.00	ug/L	1	55.6	1.47	101	75-125%			
Lead	55.6		0.200	ug/L	1	55.6	ND	100	75-125%			
Manganese	1990		1.00	ug/L	1	55.6	1930	116	75-125%			
Mercury	1.10		0.0800	ug/L	1	1.11	ND	99	75-125%			
Molybdenum	33.1		1.00	ug/L	1	27.8	0.698	117	75-125%			
Nickel	59.1		2.00	ug/L	1	55.6	1.93	103	75-125%			В-0
Selenium	29.9		1.00	ug/L	1	27.8	ND	108	75-125%			
Silver	28.6		0.200	ug/L	1	27.8	ND	103	75-125%			
Thallium	26.7		0.200	ug/L	1	27.8	ND	96	75-125%			
Vanadium	70.7		2.00	ug/L	1	55.6	6.74	115	75-125%			
Zinc	60.5		4.00	ug/L	1	55.6	ND	109	75-125%			
Matrix Spike (24E0261-MS2)			Prepared:	: 05/07/24	14:57 Anal	yzed: 05/08	/24 15:39					
QC Source Sample: Non-SDG (A41	01728-03)											
EPA 6020B												
Boron	502		10.0	ug/L	1	222	282	99	75-125%			
Lithium	236		5.00	ug/L	1	222	16.2	99	75-125%			
Strontium	547		5.00	ug/L	1	222	281	120	75-125%			
Matrix Spike (24E0261-MS3)			ъ .	05/05/2:	14.57 : :	yzed: 05/08	12.4.00.72					

QC Source Sample: Non-SDG (A4D1728-02RE1)

Philip Menberg

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 51 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464,027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0261 - EPA 3015A							Wa	ter				
Matrix Spike (24E0261-MS3)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/08	8/24 09:53					
QC Source Sample: Non-SDG (A4)	D1728-02RE	<u> </u>										
EPA 6020B												
Beryllium	34.0		20.0	ug/L	100	27.8	ND	122	75-125%			Q-10
Magnesium	108000		15000	ug/L	100	2780	102000	198	75-125%			Q-16, Q-65
Potassium	64000		10000	ug/L	100	2780	55000	326	75-125%			Q-16, Q-65
Sodium	1020000		10000	ug/L	100	2780	1020000	11	75-125%			Q-16, Q-65
Matrix Spike (24E0261-MS4)			Prepared	: 05/07/24	14:57 Ana	lyzed: 05/09	9/24 12:38					
QC Source Sample: Non-SDG (A4)	D1728-02RE	22)										
EPA 6020B												
Calcium	99900		60000	ug/L	100	2780	101000	-47	75-125%			Q-16, Q-65

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

		Amm	onia by Gas	Diffusion	on and Co	olorimetri	C Detecti	on				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1073 - Method Prep	: Aq						Wa	ter				
Blank (24D1073-BLK1)			Prepared	: 04/29/24	10:17 Anal	lyzed: 04/29	/24 13:05					
SM 4500-NH3 G Ammonia as N	ND		0.0200	mg/L	1							
LCS (24D1073-BS1)			Prepared	: 04/29/24	10:17 Anal	lyzed: 04/29	/24 13:06					
SM 4500-NH3 G Ammonia as N	2.07		0.0200	mg/L	1	2.00		104	90-111%			
Matrix Spike (24D1073-MS1)			Prepared	: 04/29/24	10:17 Ana	lyzed: 04/29	/24 13:11					
OC Source Sample: Non-SDG (A4 SM 4500-NH3 G	D1567-02)											
Ammonia as N	2.68		0.0250	mg/L	1	2.50	0.108	103	90-111%			
Matrix Spike Dup (24D1073-M	Prepared	: 04/29/24	10:17 Anal	lyzed: 04/29	/24 13:12							
OC Source Sample: Non-SDG (A4												
Ammonia as N	2.66		0.0250	mg/L	1	2.50	0.108	102	90-111%	0.7	13%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1030 - Method Pr	ep: Aq						Wa	ter				
Blank (24D1030-BLK1)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26/	/24 14:05					
EPA 300.0												
Bromide	ND		1.00	mg/L	1							
Chloride	ND		1.00	mg/L	1							
Fluoride	ND		1.00	mg/L	1							
Nitrate-Nitrogen	ND		0.250	mg/L	1							
Nitrite-Nitrogen	ND		0.250	mg/L	1							
Sulfate	ND		1.00	mg/L	1							
LCS (24D1030-BS1)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26/	/24 14:27					
EPA 300.0												
Bromide	8.32		1.00	mg/L	1	8.00		104	90-110%			
Chloride	8.23		1.00	mg/L	1	8.00		103	90-110%			
Fluoride	8.23		1.00	mg/L	1	8.00		103	90-110%			
Nitrate-Nitrogen	2.05		0.250	mg/L	1	2.00		102	90-110%			
Nitrite-Nitrogen	2.04		0.250	mg/L	1	2.00		102	90-110%			
Sulfate	8.34		1.00	mg/L	1	8.00		104	90-110%			
Ouplicate (24D1030-DUP1)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26/	/24 16:36					
QC Source Sample: GM1-MW	/4-042524 (A4Γ	01585-01)										
EPA 300.0												
Bromide	ND		1.00	mg/L	1		ND				10%	
Chloride	1.84		1.00	mg/L	1		1.84			0.1	3%	
Fluoride	ND		1.00	mg/L	1		ND				10%	
Nitrate-Nitrogen	0.701		0.250	mg/L	1		0.699			0.3	3%	
Nitrite-Nitrogen	ND		0.250	mg/L	1		ND				10%	
Sulfate	2.04		1.00	mg/L	1		2.06			0.8	4%	
Ouplicate (24D1030-DUP2)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26/	/24 19:50					
OC Source Sample: Non-SDG	(A4D1619-01)											
Bromide	ND		1.00	mg/L	1		ND				10%	COl
Chloride	1.79		1.00	mg/L	1		1.79			0.2	3%	CO
			1.00	·			ND				10%	CO
Fluoride	ND		1 (1()	mg/L	1		NII				10%	(,(,)

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 54 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1030 - Method Prep:	Aq						Wa	ter				
Duplicate (24D1030-DUP2)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26	/24 19:50					
QC Source Sample: Non-SDG (A4I	D1619-01)											
Nitrite-Nitrogen	ND		0.250	mg/L	1		ND				10%	CON
Sulfate	68.5		1.00	mg/L	1		67.2			2	4%	CONT,
Matrix Spike (24D1030-MS1)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26	/24 16:57					
QC Source Sample: GM1-MW4-04	2524 (A4I	01585-01)										
EPA 300.0												
Bromide	10.4		1.25	mg/L	1	10.0	ND	104	85-115%			
Chloride	12.4		1.25	mg/L	1	10.0	1.84	106	90-113%			
Fluoride	10.6		1.25	mg/L	1	10.0	ND	106	88-120%			
Nitrate-Nitrogen	3.26		0.312	mg/L	1	2.50	0.699	103	87-112%			
Nitrite-Nitrogen	2.54		0.312	mg/L	1	2.50	ND	102	90-114%			
Sulfate	12.6		1.25	mg/L	1	10.0	2.06	106	88-115%			
Matrix Spike (24D1030-MS2)			Prepared	: 04/26/24	11:57 Anal	yzed: 04/26	/24 20:11					
QC Source Sample: Non-SDG (A4I	D1619-01)											
EPA 300.0												
Bromide	10.6		1.25	mg/L	1	10.0	ND	106	85-115%			CON
Chloride	12.3		1.25	mg/L	1	10.0	1.79	105	90-113%			CON
Fluoride	12.3		1.25	mg/L	1	10.0	ND	123	88-120%			CONT,Q-0
Nitrate-Nitrogen	2.58		0.312	mg/L	1	2.50	ND	103	87-112%			CON
Nitrite-Nitrogen	2.58		0.312	mg/L	1	2.50	ND	103	90-114%			CON
Sulfate	79.1		1.25	mg/L	1	10.0	67.2	119	88-115%			CONT,E Q-0

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464,027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

	Tot	tal Cyanide	by UV Dig	estion/G	as Diffus	ion/Ampe	rometric	Detection	n			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0029 - ASTM D7511-	12 (W)						Wa	ter				
Blank (24E0029-BLK1)			Prepared	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:18					
<u>D7511-12</u>												
Total Cyanide	ND		0.00500	mg/L	1							
LCS (24E0029-BS1)			Prepared	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:20					
<u>D7511-12</u>												
Total Cyanide	0.0260		0.00500	mg/L	1	0.0250		104	84-116%			
Matrix Spike (24E0029-MS1)			Prepared	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:26					
QC Source Sample: GM1-MW4-04	12524 (A4D	01585-01)										
<u>D7511-12</u>												
Total Cyanide	0.0256		0.00503	mg/L	1	0.0251	ND	102	64-136%			
Matrix Spike (24E0029-MS2)			Prepared	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:38					CON
OC Source Sample: Non-SDG (A4)	D1621-02)											
<u>D7511-12</u>												
Total Cyanide	0.0361		0.00503	mg/L	1	0.0251	0.00970	105	64-136%			
Matrix Spike Dup (24E0029-M	SD1)		Prepared:	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:28					
QC Source Sample: GM1-MW4-04	12524 (A4D	<u>01585-01)</u>										
<u>D7511-12</u>												
Total Cyanide	0.0262		0.00503	mg/L	1	0.0251	ND	104	64-136%	2	47%	
Matrix Spike Dup (24E0029-M	SD2)		Prepared	: 05/01/24	12:29 Anal	lyzed: 05/01	/24 15:40					CON
QC Source Sample: Non-SDG (A4)	D1621-02)											
Total Cyanide	0.0354		0.00503	mg/L	1	0.0251	0.00970	102	64-136%	2	47%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 56 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464,027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total	Phosphore	us by Persi	ulfate Dig	jestion/C	olorimetri	ic Spectr	ophotome	etry			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0080 - Persulfate	Digestion						Wa	ter				
Blank (24E0080-BLK1)			Prepared	1: 05/02/24	10:09 Ana	lyzed: 05/02	2/24 16:36					
SM 4500-P E Phosphorus	ND		0.100	mg/L	1							
LCS (24E0080-BS1)			Prepared	l: 05/02/24	10:09 Ana	lyzed: 05/02	2/24 16:37					
SM 4500-P E Phosphorus	0.550		0.100	mg/L	1	0.522		105	85-118%			
Matrix Spike (24E0080-MS	1)		Prepared	l: 05/02/24	10:09 Ana	lyzed: 05/02	2/24 16:47					
QC Source Sample: Non-SDG SM 4500-P E	(A4D1637-11)											
Phosphorus	0.158		0.100	mg/L	1	0.522	ND	30	85-118%			Q-0:
Matrix Spike Dup (24E0080	-MSD1)		Prepared	1: 05/02/24	10:09 Ana	lyzed: 05/02	2/24 16:47					
OC Source Sample: Non-SDG	(A4D1637-11)											
Phosphorus	0.116		0.100	mg/L	1	0.522	ND	22	85-118%	31	19%	Q-0

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464,027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Moist	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0112 - Total Dissolv	ed Solids	- 2022					Wat	er				
Blank (24E0112-BLK1)			Prepared	: 05/02/24	19:08 Anal	yzed: 05/02	/24 19:08					
SM 2540 C Total Dissolved Solids	ND		5.00	mg/L	1							
Duplicate (24E0112-DUP1)			Prepared	: 05/02/24	19:08 Anal	yzed: 05/02	/24 19:08					
QC Source Sample: Non-SDG (A4	4D1588-01R	E1)										
Total Dissolved Solids	556		5.00	mg/L	1		560			0.717	10%	
Duplicate (24E0112-DUP2)			Prepared	: 05/02/24	19:08 Anal	yzed: 05/02	/24 19:08					
QC Source Sample: Non-SDG (A4	4D1711-01)											
Total Dissolved Solids	70.0		5.00	mg/L	1		50.0			33.3	10%	Q-1
Reference (24E0112-SRM1)			Prepared	: 05/02/24	19:08 Anal	yzed: 05/02	/24 19:08					
SM 2540 C	2.500			~		2.450		101				
Total Dissolved Solids	2500			mg/L	1	2470		101 8	31.8-118.29	⁄o		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 58 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conver	ntional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0950 - Method Prep	: Aq						Wa	ter				
Duplicate (24D0950-DUP1)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 18:32					
QC Source Sample: Non-SDG (A4	D1575-01)											
pН	6.0			pH Units	s 1		6.0			0.2	2%	H-1
pH Temperature (deg C)	19.9			pH Units	s 1		20.7			4	30%	H-1
Reference (24D0950-SRM1)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 11:22					
SM 4500-H+B												
pH	6.0			pH Units		6.00		100 9	8.33-101.33	%		
pH Temperature (deg C)	21.2			pH Units	s 1	20.0		106	50-200%			
Reference (24D0950-SRM2)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 11:24					
SM 4500-H+ B												
pН	8.0			pH Units		8.00		99	99-101%			
pH Temperature (deg C)	21.2			pH Units	s 1	20.0		106	50-200%			
Reference (24D0950-SRM3)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 18:29					
SM 4500-H+ B												
pH	6.0			pH Units	s 1	6.00		100 9	8.33-101.33	%		
pH Temperature (deg C)	21.5			pH Units	s 1	20.0		108	50-200%			
Reference (24D0950-SRM4)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 18:45					
SM 4500-H+ B												
pH	8.0			pH Units	s 1	8.00		99	99-101%			
pH Temperature (deg C)	21.4			pH Units	s 1	20.0		107	50-200%			
Reference (24D0950-SRM5)			Prepared	: 04/25/24 0	9:42 Ana	lyzed: 04/25	/24 18:53					
SM 4500-H+B												
pH	6.0			pH Units	s 1	6.00		100 9	8.33-101.33	%		
pH Temperature (deg C)	21.6			pH Units	s 1	20.0		108	50-200%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 59 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conver	ntional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1034 - Method Prep	: Aq						Wat	er				
Blank (24D1034-BLK1)			Prepared	: 04/26/24 1	3:43 Ana	lyzed: 04/26	/24 17:40					
SM 2510 B Conductivity	ND		2.50	umhos/cr @25deg0	-							
Duplicate (24D1034-DUP1)			Prepared	: 04/26/24 1	3:43 Ana	lyzed: 04/26	/24 18:01					
QC Source Sample: GM1-MW4-0-	42524 (A4D	01585-01)										
SM 2510 B Conductivity	145		2.50	umhos/cr @25deg			145			0.1	3%	
Reference (24D1034-SRM1)			Prepared	: 04/26/24 1	3:43 Ana	lyzed: 04/26	/24 17:43					
SM 2510 B Conductivity	1440			umhos/cr @25deg0	-	1410		102	95-105%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

QUALITY CONTROL (QC) SAMPLE RESULTS

Conventional Chemistry Parameters												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1070 - Method Prep	: Aq						Wa	ter				
Blank (24D1070-BLK1)			Prepared	: 04/29/24 0	9:43 Ana	yzed: 04/29	/24 11:18					
SM 2320 B												
Total Alkalinity	ND		20.0	mg CaCO3/I	1							
Bicarbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1							
LCS (24D1070-BS1)			Prepared	: 04/29/24 0	9:43 Ana	yzed: 04/29	/24 11:27					
SM 2320 B												
Total Alkalinity	104		20.0	mg CaCO3/I	1	100		104	90-115%			
Duplicate (24D1070-DUP1)			Prepared	: 04/29/24 0	9:43 Ana	lyzed: 04/29	/24 11:51					
QC Source Sample: Non-SDG (A4	D1533-01)											
Total Alkalinity	46.2		20.0	mg CaCO3/I	1		45.9			0.7	5%	
Bicarbonate Alkalinity	46.2		20.0	mg CaCO3/I	1		45.9			0.7	5%	
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 61 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0144							
A4D1585-01RE1	Water	EPA 8260D	04/25/24 11:50	05/03/24 11:47	5mL/5mL	5mL/5mL	1.00
A4D1585-02RE1	Water	EPA 8260D	04/25/24 14:50	05/03/24 11:47	5mL/5mL	5mL/5mL	1.00
		EPA 8260D					

		Semivolat	ile Organic Compour	ids by EPA 8270E			
Prep: EPA 3510C (Ad	cid/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0053							
A4D1585-01RE1	Water	EPA 8270E	04/25/24 11:50	05/02/24 04:55	1020 mL/1 mL	1000 mL/1 mL	0.98
A4D1585-02RE1	Water	EPA 8270E	04/25/24 14:50	05/02/24 04:55	920mL/1mL	1000 mL/1 mL	1.09

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0261							
A4D1585-01	Water	EPA 6020B	04/25/24 11:50	05/07/24 14:57	45mL/50mL	45mL/50mL	1.00
A4D1585-01RE1	Water	EPA 6020B	04/25/24 11:50	05/07/24 14:57	45mL/50mL	45mL/50mL	1.00
A4D1585-02	Water	EPA 6020B	04/25/24 14:50	05/07/24 14:57	45mL/50mL	45mL/50mL	1.00
A4D1585-02RE1	Water	EPA 6020B	04/25/24 14:50	05/07/24 14:57	45mL/50mL	45mL/50mL	1.00

		Ammonia by (Gas Diffusion and C	olorimetric Detectior	า		
Prep: Method Prep: A	<u>\q</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D1073							
A4D1585-01	Water	SM 4500-NH3 G	04/25/24 11:50	04/29/24 10:17	10mL/10mL	10mL/10mL	1.00
A4D1585-02	Water	SM 4500-NH3 G	04/25/24 14:50	04/29/24 10:17	10mL/10mL	10mL/10mL	1.00

		Д	nions by Ion Chroma	itography			
Prep: Method Prep:	Aq				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D1030							
A4D1585-01	Water	EPA 300.0	04/25/24 11:50	04/26/24 11:57	5mL/5mL	5mL/5mL	1.00
A4D1585-02	Water	EPA 300.0	04/25/24 14:50	04/26/24 11:57	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 62 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

SM 2510 B

SM 2510 B

Report ID: A4D1585 - 05 14 24 1516

SAMPLE PREPARATION INFORMATION

		A	nions by Ion Chroma	tography			
Prep: Method Prep: A Lab Number	<u>q</u> Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
		Total Cyanide by UV	Digestion/Gas Diffus	sion/Amperometric [Detection		
Prep: ASTM D7511-1:	2 <u>(W)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0029							
A4D1585-01	Water	D7511-12	04/25/24 11:50	05/01/24 12:29	10mL/10mL	10mL/10mL	1.00
A4D1585-02	Water	D7511-12	04/25/24 14:50	05/01/24 12:29	10mL/10mL	10mL/10mL	1.00
	To	otal Phosphorus by Pe	ersulfate Digestion/C	olorimetric Spectrop	ohotometry		
Prep: Persulfate Dige	<u>stion</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0080							
A4D1585-01	Water	SM 4500-P E	04/25/24 11:50	05/02/24 10:09	25mL/50mL	25mL/50mL	1.00
A4D1585-02	Water	SM 4500-P E	04/25/24 14:50	05/02/24 10:09	25mL/50mL	25mL/50mL	1.00
		Sol	id and Moisture Dete	erminations			
Prep: Total Dissolved	Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0112			*	*			
A4D1585-01RE1	Water	SM 2540 C	04/25/24 11:50	05/02/24 19:08			NA
A4D1585-02RE1	Water	SM 2540 C	04/25/24 14:50	05/02/24 19:08			NA
		Con	ventional Chemistry	Parameters			
Prep: Method Prep: A	q				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0950							
A4D1585-01	Water	SM 4500-H+ B	04/25/24 11:50	04/25/24 18:08	20mL/20mL	20mL/20mL	NA
A4D1585-02	Water	SM 4500-H+ B	04/25/24 14:50	04/25/24 18:08	20mL/20mL	20mL/20mL	NA

04/25/24 11:50

04/25/24 14:50

Apex Laboratories

Batch: 24D1070

Batch: 24D1034

A4D1585-01

A4D1585-02

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

04/26/24 13:43

04/26/24 13:43

40mL/40mL

40mL/40mL

40mL/40mL

40mL/40mL

Philip Nerenberg, Lab Director

Philip Menberg

Water

Water

Page 63 of 73

NA

NA

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:00464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

SAMPLE PREPARATION INFORMATION

		Cor	ventional Chemistry	Parameters			
Prep: Method Prep:	: Aq				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4D1585-01	Water	SM 2320 B	04/25/24 11:50	04/29/24 09:43	60mL/60mL	60mL/60mL	NA
A4D1585-02	Water	SM 2320 B	04/25/24 14:50	04/29/24 09:43	60mL/60mL	60 mL / 60 mL	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 64 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 00464.027
 Report ID:

 Portland, OR 97209
 Project Manager:
 Jesse Hall
 A4D1585 - 05 14 24 1516

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

pex Laborat	unts
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
CONT	The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
E	Estimated Value. The result is above the calibration range of the instrument.
H-12	Sample Analysis or Filtration was performed >15 minutes after sample collection. Consult regulator or permit manager to determine the usability of data for intended use.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +12%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +120%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 65 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions	Project: <u>Santiam</u>	
55 SW Yamhill St, Ste 300	Project Number: 00464.027	Report ID:
Portland, OR 97209	Project Manager: Jesse Hall	A4D1585 - 05 14 24 1516

, -	, and the state of	101000 0011
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by +45%. The
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by +5%. The
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by +67%. The
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by +75%. The
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by -1%. The
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 results are reported as Estimated Values.	by -2%. The
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitive detection at the reporting level.	vity to ensure
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260	
Q-65	Spike recovery is estimated due to the high analyte concentration of the source sample.	
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in	the sample.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 66 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 00464.027
 Report ID:

 Portland, OR 97209
 Project Manager:
 Jesse Hall
 A4D1585 - 05 14 24 1516

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manhera

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 00464.027
 Report ID:

 Portland, OR 97209
 Project Manager:
 Jesse Hall
 A4D1585 - 05 14 24 1516

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 68 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 00464.027

 Portland, OR 97209
 Project Manager:
 Jesse Hall

 A4D1585 - 05 14 24 1516

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 69 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

the second secon		7-91/-9	323															SAMAS	77	SAMPS		
Company: 651 VATUE SOLUTIONS Project Mgr.	710MS PR	yect Mg	r ERIK		HEDBURG	37.00	_	Æ	oject N	Project Name: OOH wy . 02.7	8	200	.02	-	SANTIAM	AM	- \$	CAMBISHER	>			
Address: USO NE HOLLADAY STEPET	MSTEP		PUPTLANO,	TWO,	Phone:	54	2.	ā	017.2	Email	•	na	0	35	541-901-0172 Brazil: JN911095iNS.COM	2		PO #				
Sampled by: HOUN, NOKLOM, COLLIN PAVIDSON	COLLIN	0.83	MOSON								Mile		ana.	ANA	ANALYSIS REQUEST	UEST						
Site Location: State O & E & ON County MAPLIUN SAMPLE ID	aTAG	TIME	# OF CONTAINERS	имлен-нсір	xa-hatwn	NWTPH-Gx	8769 RBDM AOC*	8760 Halo VOCs	8260 VOCs Full List	8HA4 MIS 9728	8270 Semi-Vols Full List	8087 PCBs	8081 Pesticides	RCRA Metals (8)	Priority Metals (13) 11. Sb, As, Ba, Be, Cd, 13. Cr, Co, Cu, Fe, Pb, 14. Mg, Mn, Mo, Ni, K,	ig, Mg, Mn, Mo, Ni, K, e, Ag, Na, Tl, V, Zn TOTAL DISS, TCLP	TCLP Metals (8)					old Sample
6M1-MW4-042524	31/12/15	F: 50	0.1		45	10	¥ 1	ATTACHE	9	I	124			-)	ı. S	+-		\vdash			1
		+	\dashv	\Box			\dashv	\dashv				\exists										
						+	+						+									
		+				-	-						_									
																						
			\dashv																			
The state of the s			_			+		_					_									
Standard Turn Around Time (TAT) = 10 Business Days	Vround Time (IAT)=	10 Busines.	s Days			+	4		SPEC	1	NS E	SPECIAL INSTRUCTIONS	-SNS]				1
TAT Requested (circle)	(i Day	2.1	2 Day	E .	3 Day																	
SAMPLES	S Day Standar	Stan SR 30 D	Standard 30 DAYS	ă	Other:																	
	Date:	Si R	RECEIVED BY: Signature:	3,5		Date	<u>ii</u>			RELINQUISHED BY: Signature:	VQUIS		8.K:		Date:		Sig	RECEIVED BY: Signature:	BY:	Date:	نو	
nomorn	42/52/40	2	app		2	yashu	27		3	<u> </u>		,										
Nonow	7.1ec. 04 25 24	ā.	Printed Name: A VSS A.	がプラ	<u></u>	# 7!) ;;	200	7	17 Printed Name:	Name				Time:		Æ	Printed Name:	×	Time:	ë	
USI WATER SOUTIONS INC	INC	රි	Company.	And	×					Сопрапу:	E						රී	Company:				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 70 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

	3 Ph: 50	6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323	ž		CHAIN OF CUSTODY	Á	5	2	2	Ĭ				La	Lab # (441) 575		coc	ı
COMPANY: 6SI WATER SOWTIONS Project Mgr. FRIK HEDBURD	SVOI	oject Mgr: 1	7127	170	BURL		Pro	ject Nan)()(Jy lot	4. a	1	Project Name: 004 lb4, 027 SANTIAM		- Project#: CANYON	FRYOR	>	
Address: USO NE HOWADRY STREET, PORTLAND	TREET	, PORT	LAND		ione: 5	41-96	10-1	12 E	mail:	j na	8 2	gsi	Phone: 541-981-0172 Email: 1 HOLL @ 951WS. COM		PO #			
0P., 47232.							144.00				3000	TVNV	ANALYSIS REQUEST	15				
Site Location:									15			\vdash	'qa	dTO				
State OFEVON			NEKS	a		~JU/			s Full Li			-	a, Be, (u, Fe, 1 Mo, Ui,					
County MAR JON		x			~				7 72 72				As, B. Co, C					əjdu
SAMPLE ID	DATE	TIME	# OE CC	Idlan	IALMN	8760 BT	H 0978	A 0978	9S 04Z8	8082 PC	94 1808	Priority	AL, SB, Ca, Cr, Hg, Mg,	Se, Ag, 1 TOTAL TCLP I				ns2 bloH
6M1- MW2-042524 04/23	4/25/4	14:50	0		SEE	A T.7	AUTE	42	B.T.B.	F 1			[
	i i													-				
							_		-									
												-		-				
						-			<u></u>			-		ļ				
10 mm mm m m m m m m m m m m m m m m m m																		
					-	-												
The state of the s			_	\perp														
Shandard Turn Around Tirne (TAT) = 10 Rosinose Doros	Unind Time	TAT) = 10	Bueinese						SPECIAL INCIDENCE	ING		- 1		\dashv				
THE TRANSPORT	Common of the co	N = (1V1)	Dustiness	rays			12	721	N CW	INST	I COCI	S						
TAT Requested (circle)	1 Day	2 Day	Á	3 Day	A													
	5 Day	Standard	pra	Other:			1											
SAMPLES ARE HELD FOR 30 DAYS	RE HELD F	OR 30 DAY	Ş					Γ										
RELINQUISHED BY:	Date:	REC	RECEIVED BY:	į.		Date		PK 2	RELINQUISHED BY:	ISHED	BY:		į		RECEIVED BY:	3¥:	,	
UM MONAM	outsold and	Z Z	3		dh	palsa		7	175				o se		organie:		Date:	
Printed Name: Tin + + + + + + + + + + + + + + + + + + +	Time: Profest Name: ON 125/24 ANSSA	124 P	ed Name:	3	- <u>- 1</u>	#	Se t	1+ 1×	Printed Name	ije:			Time:		Printed Name:		Time:	
J T 10	INI SN	Comp	yagin.	A XXX		+	+		Сопрану:						Сопрану:			
				_													Forr	Form Y-002 R-00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 71 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 00464.027
 Report ID:

 Portland, OR 97209
 Project Manager:
 Jesse Hall
 A4D1585 - 05 14 24 1516

Philip Nerenberg

 From:
 Jesse Hall [jhall@gsiws.com]

 Sent:
 Thursday, April 25, 2024 2:47 PM

 To:
 Philip Nerenberg

 Subject:
 Santiam PIT Background Sampling

CAUTION! THIS IS AN EXTERNAL EMAIL:

This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks for taking care of this Philip. Would you please print out a list of analytes to attach to the COC when the samples come in?

• Two (2) groundwater samples for:

- General Parameters by Methods SM4500-H/SM2510B/SM2540C/SM2320B including pH, specific conductivity, total dissolved solids (TDS), and alkalinity (total, bicarbonate, carbonate, hydroxide).
- Total metals and major cations by EPA Methods 6020B/SM4500PE including aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, copper, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, phosphorus (as phosphate), potassium, selenium, silver, sodium, strontium, thallium, vanadium, and zinc.
- o Anions including bromide, chloride, fluoride, and sulfate by EPA Method 300.0/9056A.
- o Nitrogen species by EPA Method 300.0/9056A including nitrate, nitrite, and ammonia
- o Cyanide by American Society for Testing Materials (ASTM) Method D7511.
- o Volatile Organic Compounds (VOCs) by EPA Method 8260D.
- Semi-volatile Organic Compounds (SVOCs) by EPA Method 8270E.

The crew had a little trouble getting started this morning and are running late. It looks like they will finish around 4 and have samples to the lab around 5. Apologies for the late drop off.

Thanks,

Jesse Hall, GIT
Project Hydrogeologist
mobile: 541.981.0172
650 NE Holladay Street, Suite 900, Portland, OR 97232
GSI Water Solutions, Inc. | www.gsiws.com

1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Memberg

Page 72 of 73

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 00464.027
Project Manager: Jesse Hall

Report ID: A4D1585 - 05 14 24 1516

	later Solutions Element WO#: A4D1585
Project/Project #: 00	464.027 Santiam Canyon
Delivery Info :	,
Date/time received: 47	spu @ 1647 By: AW
Delivered by: ApexClie	ent ESS FedEx UPS Radio Morgan SDS Evergreen Other
From USDA Regulated O	origin? Yes No
Cooler Inspection Da	ate/time inspected: 425/14 @ 1647 By: DAN
Chain of Custody included	
Signed/dated by client?	Yes No
Contains USDA Reg. Soil	ls? Yes No Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.9 4.8
Custody seals? (Y/N)	<u>N — 7</u>
Received on ice? (Y/N)	
Temp. blanks? (Y/N)	$N \rightarrow$
Ice type: (Gel/Real/Other)	Roal ->
Condition (In/Out):	<u> </u>
	Possible reason why: of temperature samples? Yes/No es form initiated? Yes/No
Sample Inspection: Dat	te/time inspected: 4/25/24 @ 17:07 By: 25M
All samples intact? Yes \	No Comments:
Bottle labels/COCs agree?	? Yes <u>Y</u> No Comments:
COC/container discrepanc	cies form initiated? Yes No 🗡
Containers/volumes receiv	ved appropriate for analysis? Yes 👱 No Comments:
Do VOA vials have visible	e headspace? Yes No 🗶 NA
Comments	
Water samples: pH checke	ed: Yes <u>X</u> No <u>NA</u> pH appropriate? Yes <u>X</u> No <u>NA</u> pH ID: <u>A23IJ 16</u>
	AZYA42
Comments:	
Comments:	
Labeled by:	Witness: Cooler Inspected by:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder

05/09/2023

P. O. Box 256

CITMILC

Mill City, OR 97360

PO#:

Collection Information Date: 05/02/2023

Lab Receipt Information

05/02/2023

1045

Time: 0900 Russ

SW

By:

20230502-095

Lab #: Location:

360 Remine Rd Mill City INF

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

				EP	A Analy	sis
Analyte	Method	Acc* Results	Qual MRL	Units Lir	mit Date Time	Tech
Alkalinity, Total - 1927	SM2320 B	279.	10.	mg/l CaCO3	05/04/2023	AS
Bicarbonate Alkalinity	SM2320B	340.4	10	HC03	05/04/2023	AS
Hardness as CaCO3	SM2340C	86.	10.	mg/l CaCO3 250	05/04/2023	AS

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

Approved by: _

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder

05/22/2023

P. O. Box 256

CITMILC

Mill City, OR 97360

PO#:

Collection Information

Lab Receipt Information

Date: 05/02/2023

05/02/2023

Time: 0900

1045 SW

By: Russ Lab #:

20230502-096

Location:

360 Remine Rd Mill City Inf

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Analysis	 S
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Inorganic Chemicals								
Antimony	SM3113B		ND		0.005	mg/l	05/12/2023	bem
Arsenic	SM3113B		ND		0.002	mg/l	05/08/2023	bem
Barium	SM3113B	В	0.0109		0.0005	mg/l	05/12/2023 1	515 cbb
Beryllium	SM3113B		ND		0.001	mg/l	06/05/2023	bem
Cadmium	SM3113B		ND		0.001	mg/l	05/11/2023	bem
Chromium	SM3113B		ND		0.02	mg/l	05/09/2023	bem
Fluoride	EPA300.0		7.41		0.2	mg/l	05/02/2023	bem
Lead	SM3113 B		ND		0.001	mg/l	05/15/2023	bem
Mercury	SM3112B		ND		0.001	mg/l	05/17/2023	bem

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:	ν
The state of the s	1

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

LAB #: 20230502-096

(Cont)

CITMILC

Page: 2

						Analys	sis	
Analyte	Method	Acc* Results	Qual	MRL	Units	Date Time	Te	ech
Nickel	SM3113B	ND		0.05	mg/l	05/09/2023		bem
Nitrogen, Nitrate	EPA300.0	ND		0.2	mg/l N	05/02/2023	1640	as
Nitrogen, Nitrite	EPA300.0	ND		0.2	mg/l N	05/02/2023	1640	as
Selenium	SM3113B	ND		0.005	mg/l	05/12/2023		bem
Sodium	SM3111B	50.2		1.0	mg/l	05/09/2023		as
Thallium	SM3113B	ND		0.001	mg/l	05/11/2023		bem
Aluminum	SM3113B	0.275		0.050	mg/l	05/30/2023		bem
Copper	SM3113 B	ND		0.002	mg/l	05/31/2023		bem
Iron	SM3111B	0.286		0.1	mg/l	05/31/2023		as
Manganese	SM3111B	ND		0.05	mg/l	05/31/2023		as
Silver	SM3113B	ND		0.01	mg/l	05/22/2023		bem
Zinc	SM3111 B	0.0547		0.01	mg/l	05/31/2023	1	bem

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

	N
Approved by:	/

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

June 09, 2023

Waterlab Corp 2603 12th St SE Salem, OR 97302-2154

Work Order:

C23050297

Project Name:

Mill City WWTP

Energy Laboratories, Inc. Casper WY received the following 1 sample for Waterlab Corp on 5/8/2023 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C23050297-001	20230502-094 Mill City WWTP	05/02/23 8:30	05/08/23	Waste Water	Metals by ICP/ICPMS, Drinking Water Metals Preparation by EPA 200.2 Gross Alpha, Gross Beta, Total Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Oshley Lulson Ashley L. Wilson Date: 2023.06.09 14:46:22 -06:00

Report Approved By:

Trust our People. Trust our Data.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

CLIENT:

Waterlab Corp

Project: Work Order: Mill City WWTP C23050297 Report Date: 06/09/23

CASE NARRATIVE

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Please verify ELI's certification coverage by visiting www.energylab.com.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:

Waterlab Corp

Project:

Mill City WWTP

Lab ID:

C23050297-001 Client Sample ID: 20230502-094 Mill City WWTP Report Date: 06/09/23

Collection Date: 05/02/23 08:30

DateReceived: 05/08/23 Matrix: Waste Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES - TOTAL				127			
Uranîum	ND	mg/L		0.0003	0.03	E200.8	05/17/23 04:23 / eli-b
Uranium, Activity		pCi/L		0.2	0,00	E200.8	05/17/23 04:23 / eli-b
RADIONUCLIDES, TOTAL							
Gross Alpha	-5	pCi/L	U			E900.0	05/27/23 02:30 / haw
Gross Alpha precision (±)	1.7	•	J			E900.0	05/27/23 02:30 / haw
Gross Alpha MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Gross Beta		pCi/L				E900.0	05/27/23 02:30 / haw
Gross Beta precision (±)						E900.0	05/27/23 02:30 / haw
Gross Beta MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Radium 226		pCi/L	U			E903.0	05/23/23 11:12 / kdk
Radium 226 precision (±)		pCi/L	~			E903.0	05/23/23 11:12 / kdk
Radium 226 MDC		pCi/L				E903.0	05/23/23 11:12 / kdk
Radium 228		pCi/L				RA-05	05/23/23 11:12 / kgk 05/18/23 13:08 / trs
Radium 228 precision (±)	1.1	pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 MDC		pCi/L				RA-05	05/18/23 13:08 / trs
Radium 226 + Radium 228		pCi/L				A7500-RA	
Radium 226 + Radium 228 precision (±)		pCi/L					05/24/23 12:54 / dmf
Radium 226 + Radium 228 MDC		pCi/L				A7500-RA A7500-RA	05/24/23 12:54 / dmf 05/24/23 12:54 / dmf

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866:686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Waterlab Corp Work Order: C23050297

Report Date: 05/17/23

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8				·			Analytical	Run: I	CPMS207-B	230515A
Lab ID:	QCS	Init	ial Calibratio	on Verification	Standard					05/17/	23 02:09
Uranium			0.0476	mg/L	0.00030	95	90	110			
Lab ID:	ccv	Со	ntinuing Cal	ibration Verifi	cation Standar	d				05/17/	23 03:40
Uranium			0.0476	mg/L	0.00030	95	90	110			
Method:	E200.8	- <u></u>								Batcl	n: 178689
Lab ID:	MB-178689	2 Me	thod Blank				Run: ICPMS	207-B_230515A		05/17/	23 02:58
Uranium			0.00003	mg/L	0.00002						
Uranium, A	Activity		0.02	pCi/L	0.01						
Lab ID:	LCS4-178689	Lat	oratory Cor	ntrol Sample			Run: ICPMS	207-B_230515A		05/17/	23 03:04
Uranium			0.0932	mg/L	0.00030	93	85	115			
Lab ID:	B23050597-001AMS4	Sai	mple Matrix	Spike			Run: ICPMS	207-B_230515A		05/17/	23 03:58
Uranium			0.0960	mg/L	0.00030	95	70	130			
Lab ID:	B23050597-001AMSD) Sar	mple Matrix	Spike Duplica	ite		Run: ICPMS	207-B_230515A		05/17/	23 04:04
Uranium			0.102	mg/L	0.00030	101	70	130	6.0	20	

Qualifiers:

RL - Analyte Reporting Limit

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp

Work Order: C23050297

Report Date: 06/01/23

Analyte	Count	Result	Units	DI DI	0/DEC	I and I imit			. 00/01/20	
		- IVESUIK	Ones	KL.	%KEU	LOW LIMIT	High Limit	RPD	RPDLimit	Qual
Method: E900.0 Lab ID: Th230-GrAB-3184									Batch: G	rAB-3184
***************************************	3 La		ntrol Sample			Run: G5421	И-2_230523A		05/27/	23 02:30
Gross Alpha		98	pCi/L		98	70	130			
Gross Alpha precision (±)		20	pCi/L							
Gross Alpha MDC		3.8	pCi/L							
Lab ID: Sr90-GrAB-3184	3 La	iboratory Co	ntrol Sample			Run: G542N	/I-2 230523A		05/27/	23 02:30
Gross Beta		550	pCi/L		115	70	130		••,	
Gross Beta precision (±)		56	pCi/L							
Gross Beta MDC		3.6	pCi/L							
Lab ID: MB-GrAB-3184	6 Me	ethod Blank				Rup: G542N	1-2_230523A		05/27/	23 02:30
Gross Alpha		-5	pCi/L			Nun. GOTZN	1-2_230323A		U01271	
Gross Alpha precision (±)		2	pCi/L							U
Gross Alpha MDC		3	pCi/L							
Gross Beta		-4	pCi/L							U
Gross Beta precision (±)		2	pCi/L							U
Gross Beta MDC		4	pCi/L							
Lab ID: C23050241-001AMS	3 Sa	ımple Matrix	Spike			Run: G542M	1-2_230523A		05/27 <i>!</i> *	23 02:30
Gross Alpha		350	pCi/L		87	70	130		00/2//	20 02.00
Gross Alpha precision (±)		72	pCi/L			, ,	.00			
Gross Alpha MDC		16	pCi/L							
Lab ID: C23050241-001AMS	D 3 Sai	mple Matrix	Spike Duplicate			Run: G542M	l-2_230523A		0 <i>51271</i>	23 02:30
Gross Alpha		400	pCi/L		99	70	130	12	30	23 02.30
Gross Alpha precision (±)		81	pCi/L		-	, ,	100	12	30	
Gross Alpha MDC		18	pCi/L							
- The RER result is 0.42.		_	F - " -							
Lab ID: C23050585-010AMS	1 3 Sar	mple Matrix	Spíke			Run: G542M	-2 230523A		05/31/2	23 08:46
Gross Beta		3800	pCi/L		118	70	130			
Gross Beta precision (±)		380	pCi/L							
Gross Beta MDC		19	pCi/L							
ab ID: C23050585-010AMSI	3 Sar	mple Matrix :	Spike Duplicate			Run: G542M	-2 230523A		05/31/2	3 08:46
Gross Beta		3700	pCi/L		115	70	130	3.1	30	00.70
Gross Beta precision (±)		370	pCi/L					٠.,		
Gross Beta MDC		20	pCi/L							
- The RER result is 0.22.										

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp

Work Order: C23050297

Report Date: 06/01/23

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E903.0				~~~				•	Batch: RA2	26-10894
Lab ID:	LCS-RA226-10894	3 La	boratory Cor	ntrol Sample			Run: TENN	ELEC-3_2305128	3		/23 11:12
Radium 22	26		11	pCi/L		114	70	130	•	00/20/	20 11.12
Radium 22	26 precision (±)		2.3	pCi/L		,		.00			
Radium 22	26 MDC		0.22	pCi/L							
Lab ID:	MB-RA226-10894	3 Me	thod Blank				Run TENN	ELEC-3_230512E	2	05/23/	23 11:12
Radium 22	26		0.1	pCi/L			7.011, 7.011		,	00/20/	23 11.12 U
Radium 22	26 precision (±)		0.2	pCi/L							· ·
Radium 22	26 MDC		0.2	pCi/L							
Lab ID:	C23050423-001FDUP	3 Sa	mple Duplica	ate			Run: TENNI	ELEC-3_230512E	2	05/22/	23 11:12
Radium 22	26		1.9	pCi/L			17011. 1	LLLU-0_200012L	, 5.6	30	23 11.12
Radium 22	26 precision (±)		0.48	pCi/L					0.0	30	
Radium 22 - The RER	26 MDC result is 0.15.		0.23	pCi/L							

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp

Work Order: C23050297

Report Date: 06/01/23

Analyte	Count R	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: RA-05					····				Batch: RA	228-7094
Lab ID: LCS-228-RA220	6-10894 3 Labora	tory Con	trol Sample			Run: TENN	ELEC-3_230512/	7		/23 13:08
Radium 228		5.7	pCi/L		81	70	130	•	00/10/	20 10.00
Radium 228 precision (±)		1.4	pCi/L							
Radium 228 MDC		1.2	pCi/L							
Lab ID: MB-RA226-1089	94 3 Method	l Blank				Run: TENN	ELEC-3_230512A		05/10	23 13:08
Radium 228		2	pCi/L				LLLO-0_2000127	`	05/16/	23 13.00
Radium 228 precision (±)		8.0	pCi/L							
Radium 228 MDC		1	pCi/L							
Lab ID: C23050423-001	FDUP 3 Sample	: Duplica	te			Run: TENNI	ELEC-3_230512A		05/40	23 13:08
Radium 228	•	2.2	pCi/L			TOTAL PERMIT	LLLC-3_230312A	, 11	30	23 13:08
Radium 228 precision (±)		0.91	pCi/L					11	30	
Radium 228 MDC - The RER result is 0.19.		1.3	pCi/L							

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

C23050297

Waterlab Corp

Work Order Receipt Checklist

		•			
Login completed by:	Hannah R. Johnson		Date	Received: 5/8/2023	
Reviewed by:	cjohnson		Re	eceived by: cch	
Reviewed Date:	5/10/2023		Car	rrier name: UPS	
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes 🗌	No 🗌	Not Present ☑	
Custody seals intact on all s	sample bottles?	Yes 🗌	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed wh	en relinquished and received?	Yes ☑	No 🗌		
Chain of custody agrees wit	th sample labels?	Yes 📋	No 🗸		
Samples in proper containe	r/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume fo	r indicated test?	Yes 🗹	No 🗌		
All samples received within (Exclude analyses that are such as pH, DO, Res Cl, S	considered field parameters	Yes ☑	No 🗌		
Temp Blank received in all	shipping container(s)/cooler(s)?	Yes 🔲	No 🗸	Not Applicable	
Container/Temp Blank temp	perature:	12.8°C No Ice			
Containers requiring zero hobble that is <6mm (1/4").	eadspace have no headspace or	Yes [No 🔲	No VOA vials submitted	<u> </u>
Water - pH acceptable upor	n receipt?	Yes 🗹	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The sample collection time indicated on the COC is 09:00, the collection time listed on the sample bottles is 08:30, Beth requested we use the collection time on the sample bottles-Chantel S. Johnson

Chain of Gustody & Analytical Request Record

of 1

Page 1

							MANAGE PER A VIEW COLL	10,70						Pane 1	
Accountinf	Account Information (Billing Information)	nformation)			Repo	rt Inforn	affon	l cliffeenet th	in decour	Report Information Weignand that Account the second			Č	200	
Company/Name Waterlab Corp	Waterlab Corp				Company/Narie	v/Name		omeron in	ar Account	поствиол			Comments	ients	
Contact	Beth Myers				Contact		Reff. Myers								
Phone 5	603-363-0473				Phone										
Malling Address: 2	Malling Address 2603 12th St SE				Mallino Address	voldreša	- Juan							Please do not return	aturn
City, State, Zip S	Salem, OR 97302.				City, State, Zip	ie. Zip								cooler IIIIIIII	
Ernall D	beth@waterlabcorp.com	moo'c			Email	3	h@wate	beth@waterlabcom.com	wo.	ļ					***
	JHard Copy (BEmail		Receive Report Cittard Copy	py (EEmal)	Receive	Receive Report Littand Copy	ard Copy	(elemen)					·		
Purchase Order	Oriote	•	Bottje Order.		Special Ro	Special Roport/Formels:	LAG. DE	Clebbled (contractaboration)	lact faborate	of Ciber					
Project Information	maffon				Matrix Codes	odes	-		1	1					
Project Name, PW	Project Name, PWSID, Permit, etc. MIII City WWTP	Sity WWYTP			A SE	15	-		2	Alicalysis Requested	sted			All tumaround times are	e.
Sempler Neme		Sampler Phon	Sampler Phone (503) 363-0473	3473	88	Soils		·				-/ NAI	-	standard unless marked as RUSH.	BS
Sample Origin State Oregon	е Отедоп	EPA/State Compliance	ompliance [] Yes	ov 🗐 se,	V · Vegotalion B · Blönssay	Vegotalion		-		-	-		1	Energy Laboratories MUST be confacted or for to	t t
MINING CLENTS, please Indica "If ore has been processed or re C Byproduct 11 (e)2 material	es of	mple type, Sell before sending: 'El Unprocessed ore (NOT ground or refined)'	OT ground or re	(jued).	O. Other DW. Philips		Alpha 7.26/2:	ü	etae				bertosti	RUSH sample submittal for charges and scheduling—See Instructions Page	ुं ।
Sa	Sample Identification	no Co	Collecti	uo.	Number of	Matrix		มในธา	i ssoi					32	
1 20230502-094	4 MIII CITY WWTP	d	5/2/23	9:00 am			~;	1.1	9 <i>y</i>	-				TAT THE CHOOK OF LAW BIN	
12	Address of the Control of the Contro					*	-	\$							T
ţ,	**************************************	Weterstrifters								+					
4										<u> </u>		- -			
5.					<u>. -</u>					2					
Ľ							<u> </u>					-			
80			4.4						-					NO CO	1
ō	,						19.00								
10	The state of the s					1	~								T
H	Reinquisted by (print) April Syrathon		Date/Time, 5/2/23 16.00	Signatur	10 0 X X	Fratter.	1 2	Received by (print)	efret)		Date/Time	2	8	Signature	
——1618	Relinguished by (print)	To Design	Dale/Tinle	Signatur				New By	No.	the sale	Date	P. H. H. 23		Signature	T
Shipped By	Cooler (D(s)	Custody Seals Y N C B	Infect Y N	Receipt Temp		§	On Ice	CC CG	Payment Type Payment Type Cash Check	Type	Am		Receip	Receipt Number (caskcheckorty)	
				:						۶	_				

In certain bircumstances, samples submitted to Energy Laboratories, inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility: All subcontracted data will be clearly notated on your analytical report.

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder

P. O. Box 256

Mill City, OR 97360

05/22/2023

CITMILC

PO#:

Collection Information

Date: 05/02/2023

Time: 0900 By:

Russ

Lab #: Location: 20230502-097

360 Remine Rd. Mills City/ Influent

Lab Receipt Information

05/02/2023 1045

SW

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

					· · · · · · · · · · · · · · · · · · ·	·	Analysi	s
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Synthetic Organic Contaminants								
Synthetic Organics, Regulated								
1,2-Dibromo-3-chloropropane	EPA 504.1	В	ND		0.0000	mg/liter	05/04/2023 2	017 TJW
Ethylene Dibromide	EPA 504.1	В	ND		0.0000	mg/liter	05/04/2023 2	017 TJW
Chlordane	EPA 508	В	ND		0.0002	mg/liter	05/10/2023	806 TJW
Endrin	EPA 508	В	ND		0.00001	mg/liter	05/10/2023	806 TJW
BHC-Gamma Lindane	EPA 508	В	ND		0.00001	mg/liter	05/10/2023 0	806 TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

	M
Approved by:	

11

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

LAB #: 20230502-097

(Cont)

CITMILC

Page: 2

							Analysis	>
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Heptachlor	EPA 508	В	ND		0.00001	mg/liter	05/10/2023 0	806 TJW
Heptachlor Epoxide	EPA 508	В	ND		0.00001	mg/liter	05/10/2023 0	806 TJW
Methoxychlor	EPA 508	В	ND		0.0000	mg/liter	05/10/2023 0	806 TJW
Polychlorinated Biphenyls	EPA 508	В	ND		0.0002	mg/liter	05/10/2023 0	806 TJW
Toxaphene	EPA 508	В	ND		0.0003	mg/liter	05/10/2023 0	806 TJW
2,4,5-TP Silvex	EPA 515.3	В	ND		0.005	mg/liter	05/16/2023 0	026 TJW
Dalapon	EPA 515.3	В	ND		0.005	mg/liter	05/16/2023 0	026 TJW
Dinoseb	EPA 515.3	В	ND		0.001	mg/liter	05/16/2023 0	026 TJW
Pentachlorophenol	EPA 515.3	В	ND		0.0005	mg/liter	05/16/2023 0	026 TJW
Picloram	EPA 515.3	В	ND		0.005	mg/liter	05/16/2023 0	026 TJW
Alachlor	EPA 525.2	В	ND		0.0002	mg/liter	05/18/2023 1	628 TJW
Atrazine	EPA 525.2	В	ND		0.0003	mg/liter	05/18/2023 1	628 TJW
Benzo(a)pyrene	EPA 525.2	В	ND		0.0001	mg/liter	05/18/2023 1	628 TJW
Bis(2-ethylhexyl)phthalate	EPA 525.2	В	0.00901		0.002	mg/liter	05/18/2023 1	628 TJW
Bis(2-ethylhexyl)adipate	EPA 525.2	В	ND		0.004	mg/liter	05/18/2023 1	628 TJW
Hexachlorobenzene	EPA 525.2	В	ND		0.0003	mg/liter	05/18/2023 1	528 TJW
Hexachlorocyclopentadiene	EPA 525.2	В	ND		0.005	mg/liter	05/18/2023 1	628 TJW
Simazine	EPA 525.2	В	ND		0.0004	mg/liter	05/18/2023 1	628 TJW
Carbofuran	EPA 531.2	В	ND		0.004	mg/liter	05/03/2023 1	809 TJW
Vydate	EPA 531.2	В	ND		0.004	mg/liter	05/03/2023 1	809 TJW
Endothall	EPA 548.1	В	ND		0.01	mg/liter	05/17/2023 1	726 TJW
Diquat	EPA 549.2	В	ND		0.01	mg/liter	05/11/2023 1	548 TJW
2,4-D	EPA 515.3	В	ND		0.002	mg/liter	05/16/2023 0	026 TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

LAB #: 20230502-097 CITMILC (Cont) Page: 3 **Analysis** Analyte Method Acc* Results Qual MRL Units **Date Time** Tech Glyphosate 0.05 **EPA 547** В ND mg/liter 05/08/2023 1220 TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder 05/22/2023

P. O. Box 256

Mill City, OR 97360 CITMILC

PO#:

Collection Information

Lab Receipt Information

Date: 05/02/2023 Time: 0900 05/02/2023 1045

SW

By: Russ

20230502-098

Location: 360 Remine Rd. Mills City/ Influent

Case Narrative

Lab #:

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Anal	ysis	
Analyte	Method	Acc	* Results	Qual	MRL	Units	Date Time	Te	ch
Volatile Organics, Regulated									
1,1,1-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,1,2-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,1-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2,4-Trichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2-Dichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
1,2-Dichloropropane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Benzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

Page 1 of 2

Beth E. Myers

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

LAB #: 20230502-098 (Cont) CITMILC Page: 2

							Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	T	ech
Carbon Tetrachloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
cis-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Dichloromethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Ethylbenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Monochlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
o-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
p-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Styrene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Tetrachloroethylene (PCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Toluene	E524.2	В	0.0496		0.0005	mg/liter	05/05/2023	0024	TJW
trans-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Trichloroethylene (TCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Vinyl Chloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Xylenes, Total	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

Page 2 of 2

^{*} Accreditation

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473

FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder

10/24/2023

P. O. Box 256

CITMILC

Mill City, OR 97360

PO#:

Collection Information

Lab Receipt Information

Date: 10/17/2023

10/17/2023 1001

Time: 0855 By: Russ

RD

Lab #: 20231017-008 Location: Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Anal	ysis	
Analyte	Method	Acc	* Results	Qual	MRL	Units	Date Time	Т	ech
Fluoride	EPA300.0	Α	ND		0.2	mg/l	10/17/2023	1752	AS

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

Page 1 of 1

Sette E. Myers

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder 10/24/2023

P. O. Box 256

Mill City, OR 97360 CITMILC

PO#:

Collection Information Lab Receipt Information

Date: 10/17/2023
Time: 0855
By: Russ
10/17/2023
1001
RD

Lab #: 20231017-009

Location: Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Analy	/sis
Analyte	Method	Acc	* Results	Qual	MRL	Units	Date Time	Tech
Fluoride	EPA300.0	Α	ND		0.2	mg/l	10/17/2023	1820 as

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

Approved by:

Page 1 of 1

Sette E. Myers

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, May 23, 2024
Erik Hedberg
GSI Water Solutions
650 NE Holladay St, Ste 900
Portland, OR 97232

RE: A4E0861 - Santiam - 00464.020

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4E0861, which was received by the laboratory on 5/2/2024 at 12:38:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 2.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WW-050124	A4E0861-01	Water	05/01/24 09:10	05/02/24 12:38
SW-1-050124	A4E0861-02	Water	05/01/24 14:50	05/02/24 12:38
SW-2-050124	A4E0861-03	Water	05/01/24 15:40	05/02/24 12:38

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
650 NE Holladay St, Ste 900
Portland, OR 97232

Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WW-050124 (A4E0861-01RE1)				Matrix: W	ater	Batch: 24E0435		
Acetone	304		20.0	ug/L	1	05/13/24 11:33	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/13/24 11:33	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/13/24 11:33	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/13/24 11:33	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Chloroform	1.10		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
1,4-Dichlorobenzene	0.630		0.500	ug/L	1	05/13/24 11:33	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WW-050124 (A4E0861-01RE1)				Matrix: Wa	ater	Batch:	24E0435			
1,2-Dichloropropane	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D			
1,3-Dichloropropane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
2,2-Dichloropropane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
1,1-Dichloropropene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
Ethylbenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D			
Hexachlorobutadiene	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D			
2-Hexanone	ND		10.0	ug/L	1	05/13/24 11:33	EPA 8260D			
Isopropylbenzene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
4-Isopropyltoluene	1.01		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
Methylene chloride	ND		10.0	ug/L	1	05/13/24 11:33	EPA 8260D			
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/13/24 11:33	EPA 8260D			
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
Naphthalene	ND		5.00	ug/L	1	05/13/24 11:33	EPA 8260D			
n-Propylbenzene	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D			
Styrene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D			
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D			
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D			
Toluene	21.0		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/13/24 11:33	EPA 8260D			
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/13/24 11:33	EPA 8260D			
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D			
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/13/24 11:33	EPA 8260D			
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/13/24 11:33	EPA 8260D			
Trichlorofluoromethane	ND		2.00	ug/L	1	05/13/24 11:33	EPA 8260D			
,2,3-Trichloropropane	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/13/24 11:33	EPA 8260D			
,3,5-Trimethylbenzene	ND		1.00	ug/L ug/L	1	05/13/24 11:33	EPA 8260D			
/inyl chloride	ND		0.200	ug/L ug/L	1	05/13/24 11:33	EPA 8260D			
n,p-Xylene	ND		1.00	ug/L ug/L	1	05/13/24 11:33	EPA 8260D			
o-Xylene	ND		0.500	ug/L ug/L	1	05/13/24 11:33	EPA 8260D			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Detection Reporting Date Analyte Result Limit Limit Units Dilution Analyzed Method Ref. Notes										
WW-050124 (A4E0861-01RE1)				Matrix: Water			Batch: 24E0435				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 105 %	Limits:	80-120 %	5 <i>1</i>	05/13/24 11:33	EPA 8260D			
Toluene-d8 (Surr)			108 %		80-120 %	5 1	05/13/24 11:33	EPA 8260D			
4-Bromofluorobenzene (Surr)			96 %		80-120 %	5 1	05/13/24 11:33	EPA 8260D			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
WW-050124 (A4E0861-01RE1)				Matrix: W		•	24E0302	DCNT
Acenaphthene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Acenaphthylene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Anthracene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Benz(a)anthracene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzo(a)pyrene	ND		1.25	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzo(b)fluoranthene	ND		1.25	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzo(k)fluoranthene	ND		1.25	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzo(g,h,i)perylene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Chrysene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Dibenz(a,h)anthracene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Fluoranthene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Fluorene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
ndeno(1,2,3-cd)pyrene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
l-Methylnaphthalene	ND		1.67	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Methylnaphthalene	ND		1.67	ug/L	40	05/09/24 14:24	EPA 8270E	
Naphthalene	ND		1.67	ug/L	40	05/09/24 14:24	EPA 8270E	
Phenanthrene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Pyrene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Carbazole	ND		1.25	ug/L	40	05/09/24 14:24	EPA 8270E	
Dibenzofuran	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Chlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
4-Chloro-3-methylphenol	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4-Dichlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4-Dimethylphenol	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4-Dinitrophenol	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Methylphenol	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
3+4-Methylphenol(s)	180		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Nitrophenol	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
1-Nitrophenol	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
Pentachlorophenol (PCP)	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
Phenol	26.8		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	janic Compoi	ınds by EPA	A 8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WW-050124 (A4E0861-01RE1)				Matrix: Wa	ater	Batch: 24E0302		DCNT
2,3,5,6-Tetrachlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4,5-Trichlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4,6-Trichlorophenol	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Butyl benzyl phthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Diethylphthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Dimethylphthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Di-n-butylphthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Di-n-octyl phthalate	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
N-Nitrosodimethylamine	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
N-Nitroso-di-n-propylamine	ND		5.00	ug/L	40	05/09/24 14:24	EPA 8270E	R-02
N-Nitrosodiphenylamine	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
Bis(2-Chloroethyl) ether	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
Hexachlorobenzene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
Hexachlorobutadiene	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
Hexachlorocyclopentadiene	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
Hexachloroethane	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Chloronaphthalene	ND		0.833	ug/L	40	05/09/24 14:24	EPA 8270E	
1,2,4-Trichlorobenzene	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
4-Bromophenyl phenyl ether	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
4-Chlorophenyl phenyl ether	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
Aniline	ND		4.17	ug/L	40	05/09/24 14:24	EPA 8270E	
4-Chloroaniline	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E	
2-Nitroaniline	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
3-Nitroaniline	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
4-Nitroaniline	ND		16.7	ug/L	40	05/09/24 14:24	EPA 8270E	
Nitrobenzene	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
2,4-Dinitrotoluene	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
2,6-Dinitrotoluene	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzoic acid	117		104	ug/L	40	05/09/24 14:24	EPA 8270E	
Benzyl alcohol	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E	
Ť				8-				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WW-050124 (A4E0861-01RE1)				Matrix: Wate	er	Batch: 24E0302		DCNT		
Isophorone	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E			
Azobenzene (1,2-DPH)	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E			
Bis(2-Ethylhexyl) adipate	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E			
3,3'-Dichlorobenzidine	ND		41.7	ug/L	40	05/09/24 14:24	EPA 8270E	Q-52		
1,2-Dinitrobenzene	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E			
1,3-Dinitrobenzene	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E			
1,4-Dinitrobenzene	ND		20.8	ug/L	40	05/09/24 14:24	EPA 8270E			
Pyridine	ND		8.33	ug/L	40	05/09/24 14:24	EPA 8270E			
1,2-Dichlorobenzene	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E			
1,3-Dichlorobenzene	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E			
1,4-Dichlorobenzene	ND		2.08	ug/L	40	05/09/24 14:24	EPA 8270E			
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 73 %	Limits: 44-120 %	40	05/09/24 14:24	EPA 8270E	S-05		
2-Fluorobiphenyl (Surr)			62 %	44-120 %	40	05/09/24 14:24	EPA 8270E	S-05		
Phenol-d6 (Surr)			29 %	10-133 %	40	05/09/24 14:24	EPA 8270E	S-05		
p-Terphenyl-d14 (Surr)			54 %	50-134 %	40	05/09/24 14:24	EPA 8270E	S-05		
2-Fluorophenol (Surr)			37 %	19-120 %	40	05/09/24 14:24	EPA 8270E	S-05		
2,4,6-Tribromophenol (Surr)			130 %	43-140 %	40	05/09/24 14:24	EPA 8270E	S-05		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WW-050124 (A4E0861-01)				Matrix: W	ater			
Batch: 24E0554								
Aluminum	189		50.0	ug/L	1	05/16/24 17:51	EPA 6020B	
Antimony	ND		1.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Arsenic	1.02		1.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Barium	9.83		2.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	05/16/24 17:51	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/16/24 17:51	EPA 6020B	
Chromium	2.12		2.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Copper	13.1		2.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Lead	0.792		0.200	ug/L	1	05/16/24 17:51	EPA 6020B	
Manganese	28.7		1.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/16/24 17:51	EPA 6020B	
Molybdenum	ND		1.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Nickel	2.19		2.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Potassium	16700		100	ug/L	1	05/16/24 17:51	EPA 6020B	
Selenium	ND		1.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Silver	ND		0.200	ug/L	1	05/16/24 17:51	EPA 6020B	
Sodium	40400		100	ug/L	1	05/16/24 17:51	EPA 6020B	
Thallium	ND		0.200	ug/L	1	05/16/24 17:51	EPA 6020B	
Boron	274		10.0	ug/L	1	05/17/24 17:34	EPA 6020B	
Lithium	ND		5.00	ug/L	1	05/17/24 17:34	EPA 6020B	R-04
Strontium	94.9		5.00	ug/L	1	05/17/24 17:34	EPA 6020B	B-02
Vanadium	4.09		2.00	ug/L	1	05/16/24 17:51	EPA 6020B	
Zinc	61.5		4.00	ug/L	1	05/16/24 17:51	EPA 6020B	
WW-050124 (A4E0861-01RE1)				Matrix: W	ater			
Batch: 24E0554								
Magnesium	9140		1500	ug/L	10	05/17/24 16:28	EPA 6020B	B-02
WW-050124 (A4E0861-01RE3)				Matrix: W	ater			
Batch: 24E0705							<u> </u>	
Calcium	21500		600	ug/L	1	05/21/24 13:42	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Ammonia by Gas Diffusion and Colorimetric Detection										
	Sample Detection Reporting Date									
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
WW-050124 (A4E0861-01RE1)				Matrix: W	ater	Batch:	24E0183			
Ammonia as N 51.8 0.400 mg/L 20 05/06/24 13:40 SM 4500-NH3 G										

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 10 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
650 NE Holladay St, Ste 900
Portland, OR 97232

Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

	Anions by Ion Chromatography									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WW-050124 (A4E0861-01)	Matrix: Water									
Batch: 24E0116										
Bromide	ND		1.00	mg/L	1	05/02/24 22:12	EPA 300.0			
Chloride	37.1		1.00	mg/L	1	05/02/24 22:12	EPA 300.0			
Fluoride	ND		1.00	mg/L	1	05/02/24 22:12	EPA 300.0			
Nitrate-Nitrogen	ND		0.250	mg/L	1	05/02/24 22:12	EPA 300.0			
Nitrite-Nitrogen	ND		0.250	mg/L	1	05/02/24 22:12	EPA 300.0			
Sulfate	10.9		1.00	mg/L	1	05/02/24 22:12	EPA 300.0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 11 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
650 NE Holladay St, Ste 900
Portland, OR 97232

Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection											
Sample Detection Reporting Date Analyte Result Limit Limit Units Dilution Analyzed Method Ref. Notes											
WW-050124 (A4E0861-01)				Matrix: W	ater	Batch:	24E0227				
Total Cyanide	0.0235		0.00500	mg/L	1	05/07/24 15:25	D7511-12				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 12 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Demand Parameters										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
SW-1-050124 (A4E0861-02)	Matrix: Water									
Batch: 24E0133										
Biochemical Oxygen Demand	ND		2.67	mg/L	1	05/08/24 12:45	SM 5210 B			
SW-2-050124 (A4E0861-03)	Matrix: Water									
Batch: 24E0133										
Biochemical Oxygen Demand	ND		2.67	mg/L	1	05/08/24 12:45	SM 5210 B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Orthophosphate by Colorimetric Spectrophotometry										
	Sample Detection Reporting Date									
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
WW-050124 (A4E0861-01)				Matrix: W	ater	Batch:	24E0113			
Orthophosphate Phosphorus	6.01		0.200	mg/L	10	05/02/24 19:02	SM 4500-P E			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 14 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

Sample Detection Reporting Units Dilution Date													
Analyte	-			Units	Dilution		Method Ref.	Notes					
WW-050124 (A4E0861-01)				Matrix: Wa	ater								
	207		<i>E</i> 00	<i>a</i>		05/06/24 10:10	CM 2540 C						
Total Dissolved Solids	307		5.00	mg/L	1	05/06/24 19:18	SIVI 2340 C						
SW-1-050124 (A4E0861-02)				Matrix: Wa	ater								
Batch: 24E0206		<u></u>											
•	ND		5.00	mg/L	1	05/06/24 14:15	SM 2540 D	TSS					
Total Dissolved Solids	48.0		5.00	mg/L	1	05/06/24 19:18	SM 2540 C						
SW-2-050124 (A4E0861-03)				Matrix: Wa	ater								
Batch: 24E0206													
Total Suspended Solids Batch: 24E0214	ND		5.00	mg/L	1	05/06/24 14:15	SM 2540 D	TSS					
Total Dissolved Solids	49.0		5.00	mg/L	1	05/06/24 19:18	SM 2540 C						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 15 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters		,		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WW-050124 (A4E0861-01)				Matrix: Wat	er			
Batch: 24E0066								
pН	7.2			pH Units	1	05/02/24 16:44	SM 4500-H+ B	H-12
pH Temperature (deg C) Batch: 24E0090	20.4			pH Units	1	05/02/24 16:44	SM 4500-H+ B	H-12
Conductivity	788		2.50	umhos/cm @25degC	1	05/02/24 18:27	SM 2510 B	
Batch: 24E0292	207		20.0	C. CO2/I	1	05/09/24 12:54	CM 2220 D	
Total Alkalinity	296		20.0	mg CaCO3/L	1	05/08/24 12:54	SM 2320 B	
Bicarbonate Alkalinity	296		20.0	mg CaCO3/L	1	05/08/24 12:54	SM 2320 B	
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	05/08/24 12:54	SM 2320 B	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	05/08/24 12:54	SM 2320 B	
SW-1-050124 (A4E0861-02)				Matrix: Wat	er			
Batch: 24E0066								
рН	7.5			pH Units	1	05/02/24 16:54	SM 4500-H+ B	H-12
pH Temperature (deg C)	23.2			pH Units	1	05/02/24 16:54	SM 4500-H+ B	H-12
SW-2-050124 (A4E0861-03)				Matrix: Wat	er			
Batch: 24E0066								
pН	7.5			pH Units	1	05/02/24 16:58	SM 4500-H+ B	H-12
pH Temperature (deg C)	21.3			pH Units	1	05/02/24 16:58	SM 4500-H+ B	H-12

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 16 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0375 - EPA 5030C Water Blank (24E0375-BLK1) Prepared: 05/10/24 06:06 Analyzed: 05/10/24 12:14 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L 1 ug/L ND Bromodichloromethane 1.00 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ---------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ------ND 0.4001,1-Dichloroethane ug/L 1 1,2-Dichloroethane (EDC) 0.400ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0375 - EPA 5030C Water Blank (24E0375-BLK1) Prepared: 05/10/24 06:06 Analyzed: 05/10/24 12:14 ND 0.500 1,2-Dichloropropane ug/L 1,3-Dichloropropane ND 1.00 ug/L 1 ---------2,2-Dichloropropane ND 1.00 ug/L 1 1,1-Dichloropropene ND 1.00 ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 trans-1,3-Dichloropropene ND 1.00 ug/L 1 0.500 Ethylbenzene ND ug/L 1 Hexachlorobutadiene ND 5.00 ug/L 1 10.0 2-Hexanone ND ug/L 1 Isopropylbenzene ND 1.00 ug/L 1 4-Isopropyltoluene ND 1.00 ug/L 1 Methylene chloride 10.0 ND ug/L 1 ND 10.0 4-Methyl-2-pentanone (MiBK) ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 Naphthalene ND 5.00 ug/L 1 n-Propylbenzene ND 0.500 ug/L ND 1.00 Stvrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 0.500 1,1,2,2-Tetrachloroethane ND ug/L 1 ------Tetrachloroethene (PCE) ND 0.400 ug/L Toluene ND 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.400ug/L ND 0.500 1,1,2-Trichloroethane ug/L 1 ---------Trichloroethene (TCE) ND 0.400 ug/L Trichlorofluoromethane ND 2.00 ug/L 1 ------1,2,3-Trichloropropane ND 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 1.00 ug/L 1 ---1,3,5-Trimethylbenzene ND 1.00 ug/L 1 Vinyl chloride ND 0.200 ug/L 1 --m,p-Xylene ND 1.00 ug/L 1 o-Xylene ND 0.500 ug/L 1

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Page 18 of 82

Limits: 80-120 %

Recovery: 106 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0375 - EPA 5030C							Wa	ter				
Blank (24E0375-BLK1)			Prepared	1: 05/10/24	06:06 Anal	yzed: 05/10	/24 12:14					
Surr: Toluene-d8 (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80)-120 %		"					
LCS (24E0375-BS1)			Prepared	1: 05/10/24	06:06 Anal	yzed: 05/10	/24 11:05					
EPA 8260D												
Acetone	45.6		20.0	ug/L	1	40.0		114	80-120%			
Acrylonitrile	18.9		2.00	ug/L	1	20.0		94	80-120%			
Benzene	20.1		0.200	ug/L	1	20.0		100	80-120%			
Bromobenzene	18.4		0.500	ug/L	1	20.0		92	80-120%			
Bromochloromethane	20.1		1.00	ug/L	1	20.0		101	80-120%			
Bromodichloromethane	20.1		1.00	ug/L	1	20.0		100	80-120%			
Bromoform	22.1		1.00	ug/L	1	20.0		111	80-120%			
Bromomethane	16.9		5.00	ug/L	1	20.0		85	80-120%			
2-Butanone (MEK)	39.1		10.0	ug/L	1	40.0		98	80-120%			
n-Butylbenzene	18.6		1.00	ug/L	1	20.0		93	80-120%			
sec-Butylbenzene	19.5		1.00	ug/L	1	20.0		97	80-120%			
tert-Butylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			
Carbon disulfide	19.4		10.0	ug/L	1	20.0		97	80-120%			
Carbon tetrachloride	23.5		1.00	ug/L	1	20.0		118	80-120%			
Chlorobenzene	19.9		0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	20.2		5.00	ug/L	1	20.0		101	80-120%			
Chloroform	19.4		1.00	ug/L	1	20.0		97	80-120%			
Chloromethane	17.0		5.00	ug/L	1	20.0		85	80-120%			
2-Chlorotoluene	20.4		1.00	ug/L	1	20.0		102	80-120%			
4-Chlorotoluene	20.4		1.00	ug/L	1	20.0		102	80-120%			
Dibromochloromethane	22.0		1.00	ug/L	1	20.0		110	80-120%			
1,2-Dibromo-3-chloropropane	19.1		5.00	ug/L	1	20.0		96	80-120%			
1,2-Dibromoethane (EDB)	21.6		0.500	ug/L	1	20.0		108	80-120%			
Dibromomethane	19.5		1.00	ug/L	1	20.0		98	80-120%			
1,2-Dichlorobenzene	21.1		0.500	ug/L	1	20.0		106	80-120%			
1,3-Dichlorobenzene	21.6		0.500	ug/L	1	20.0		108	80-120%			
1,4-Dichlorobenzene	18.8		0.500	ug/L	1	20.0		94	80-120%			
Dichlorodifluoromethane	19.4		1.00	ug/L	1	20.0		97	80-120%			
1,1-Dichloroethane	18.8		0.400	ug/L	1	20.0		94	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0375 - EPA 5030C Water LCS (24E0375-BS1) Prepared: 05/10/24 06:06 Analyzed: 05/10/24 11:05 1,2-Dichloroethane (EDC) 19.6 0.400 20.0 98 ug/L 80-120% 0.400 1,1-Dichloroethene 21.2 ug/L 1 20.0 106 80-120% -----cis-1,2-Dichloroethene 19.2 0.400 ug/L 1 20.0 96 80-120% trans-1,2-Dichloroethene 19.9 0.400ug/L 1 20.0 99 80-120% 20.0 92 1,2-Dichloropropane 18.4 0.50080-120% ug/L 1 1,3-Dichloropropane 20.0 1.00 ug/L 1 20.0 100 80-120% 2,2-Dichloropropane 1.00 22.3 --ug/L 1 20.0 112 80-120% 1,1-Dichloropropene 21.1 1.00 ug/L 1 20.0 106 80-120% 1.00 94 cis-1,3-Dichloropropene 18.9 ug/L 1 20.0 80-120% trans-1,3-Dichloropropene 21.2 1.00 ug/L 1 20.0 106 80-120% Ethylbenzene 21.6 0.50020.0 108 80-120% ug/L 1 Hexachlorobutadiene 5.00 21.0 ug/L 1 20.0 105 80-120% 10.0 40.0 82 2-Hexanone 32.6 ug/L 1 80-120% Isopropylbenzene 19.3 1.00 ug/L 1 20.0 97 80-120% 95 4-Isopropyltoluene 19.0 1.00 20.0 ug/L 1 80-120% Methylene chloride 20.1 10.0 ug/L 20.0 100 80-120% 4-Methyl-2-pentanone (MiBK) 10.0 35.4 ug/L 1 40.0 88 80-120% Methyl tert-butyl ether (MTBE) 19.2 1.00 1 20.0 96 80-120% ug/L Naphthalene 16.0 5.00 20.0 ug/L 1 80 80-120% -----n-Propylbenzene 20.4 0.500 ug/L 1 20.0 102 80-120% 19.7 1.00 20.0 99 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 23.2 0.400 ug/L 1 20.0 116 80-120% 1,1,2,2-Tetrachloroethane 20.0 0.500 ug/L 20.0 100 80-120% 1 Tetrachloroethene (PCE) 22.4 0.4001 20.0 112 80-120% ug/L Toluene 19.3 1.00 20.0 96 ug/L 1 80-120% ---1,2,3-Trichlorobenzene 19.8 2.00 ug/L 1 20.0 99 80-120% 1.2.4-Trichlorobenzene 179 2.00 20.0 90 80-120% ug/L 1 ------1,1,1-Trichloroethane 20.6 0.400 ug/L 1 20.0 103 80-120% 1,1,2-Trichloroethane 20.1 0.500 ug/L 1 20.0 100 80-120% ---Trichloroethene (TCE) 18.0 0.400ug/L 1 20.0 90 80-120% Trichlorofluoromethane 21.3 2.00 20.0 106 80-120% ug/L 1 1,2,3-Trichloropropane 18.0 1.00 ug/L 1 20.0 90 80-120% 1,2,4-Trimethylbenzene 19.1 1.00 ug/L 1 20.0 96 80-120% 1,3,5-Trimethylbenzene 19.2 1.00 ug/L 1 20.0 96 80-120%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0375 - EPA 5030C							Wa	ter				
LCS (24E0375-BS1)			Prepared	1: 05/10/24	06:06 Ana	lyzed: 05/10	/24 11:05					
Vinyl chloride	16.6		0.200	ug/L	1	20.0		83	80-120%			
m,p-Xylene	41.0		1.00	ug/L	1	40.0		103	80-120%			
o-Xylene	18.6		0.500	ug/L	1	20.0		93	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	80	0-120 %		"					
Ouplicate (24E0375-DUP1)			Prepared	l: 05/10/24	06:06 Ana	lyzed: 05/10	/24 19:01					
OC Source Sample: Non-SDG (A4	E0920-11RI	E <u>1)</u>										
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0375 - EPA 5030C Water Duplicate (24E0375-DUP1) Prepared: 05/10/24 06:06 Analyzed: 05/10/24 19:01 QC Source Sample: Non-SDG (A4E0920-11RE1) 1,3-Dichlorobenzene ND 5.00 ug/L 10 ND 30% 5.00 30% 1,4-Dichlorobenzene ND ug/L 10 ND Dichlorodifluoromethane ND 10.0 ug/L 10 ND 30% 1,1-Dichloroethane ND 4.00 ug/L 10 ND 30% 1,2-Dichloroethane (EDC) ND 4.00 10 ND 30% ug/L ---------ND 4.00 30% 1,1-Dichloroethene ug/L 10 ND cis-1,2-Dichloroethene ND 4.00 ug/L 10 ND 30% ND 4.00 30% trans-1,2-Dichloroethene ug/L 10 ND ---1,2-Dichloropropane ND 5.00 ug/L 10 ND 30% 1,3-Dichloropropane ND 10.0 ug/L 10 ND 30% 2,2-Dichloropropane ND 10.0 ug/L 10 ND 30% 10.0 1,1-Dichloropropene ND 30% ug/L 10 ND 10.0 cis-1,3-Dichloropropene ND ug/L 10 ND 30% 10.0 trans-1,3-Dichloropropene ND 10 ND 30% ug/L 5.00 Ethylbenzene ND ug/L 10 ND 30% Hexachlorobutadiene ND 50.0 ug/L 10 ND ___ 30% 2-Hexanone ND 100 ug/L 10 ND 30% ND 10.0 10 ND 30% Isopropylbenzene ug/L ---4-Isopropyltoluene 10.0 30% ND ug/L 10 ND Methylene chloride 100 ND 10 ND 30% ug/L 4-Methyl-2-pentanone (MiBK) ND 100 ND 30% ug/L 10 10.0 Methyl tert-butyl ether (MTBE) ND --ug/L 10 ND ------30% Naphthalene ND 50.0 ug/L 10 ND 30% ND 5.00 30% n-Propylbenzene ug/L 10 ND ---ND 10.0 ND 30% Stvrene ug/L 10 4.00 30% 1,1,1,2-Tetrachloroethane ND 10 ND ug/L 1,1,2,2-Tetrachloroethane ND 5.00 ug/L 10 ND 30% Tetrachloroethene (PCE) 4.00 204 30% 202 ug/L 10 1 Toluene ND 10.0 ug/L 10 ND 30% 1.2.3-Trichlorobenzene ND 20.0 10 ND 30% ug/L ------1,2,4-Trichlorobenzene ND 20.0 ug/L 10 ND 30% 1,1,1-Trichloroethane ND 4.00 30% 10 ND ug/L ---1,1,2-Trichloroethane ND 5.00 ug/L 10 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0375 - EPA 5030C							Wa	ter				
Duplicate (24E0375-DUP1)			Prepared	1: 05/10/24	06:06 Anal	yzed: 05/10/	/24 19:01					
QC Source Sample: Non-SDG (A4	E0920-11RI	E1)										
Trichloroethene (TCE)	8.40		4.00	ug/L	10		9.50			12	30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		2.00	ug/L	10		ND				30%	
m,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
QC Source Sample: Non-SDG (A4 EPA 8260D	<u>E1073-02)</u>											
EPA 8260D												
Acetone	231		100	ug/L	5	200	ND	115	39-160%			
Acrylonitrile	95.6		10.0	ug/L	5	100	ND	96	63-135%			
Benzene	107		1.00	ug/L	5	100	ND	107	79-120%			
Bromobenzene	101		2.50	ug/L	5	100	ND	101	80-120%			
Bromochloromethane	102		5.00	ug/L	5	100	ND	102	78-123%			
Bromodichloromethane	107		5.00	ug/L	5	100	ND	107	79-125%			
Bromoform	116		5.00	ug/L	5	100	ND	116	66-130%			
Bromomethane	90.8		25.0	ug/L	5	100	ND	91	53-141%			
2-Butanone (MEK)	197		50.0	ug/L	5	200	ND	98	56-143%			
n-Butylbenzene	108		5.00	ug/L	5	100	ND	108	75-128%			
sec-Butylbenzene	111		5.00	ug/L	5	100	ND	111	77-126%			
tert-Butylbenzene	105		5.00	ug/L	5	100	ND	105	78-124%			
Carbon disulfide	108		50.0	ug/L	5	100	ND	108	64-133%			
	133		5.00	ug/L	5	100	ND	133	72-136%			
Carbon tetrachloride	155				_	100	ND	106	80-120%			
Carbon tetrachloride Chlorobenzene	106		2.50	ug/L	5	100	ND	100	80-12070			
			2.50 25.0	ug/L ug/L	5 5	100	ND	109	60-138%			
Chlorobenzene	106			_								

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0375 - EPA 5030C Water Matrix Spike (24E0375-MS1) Prepared: 05/10/24 06:06 Analyzed: 05/10/24 12:58 QC Source Sample: Non-SDG (A4E1095-02) 2-Chlorotoluene 5.00 ug/L 5 100 ND 112 79-122% 4-Chlorotoluene 5.00 5 100 113 ug/L ND 113 78-122% 5 Dibromochloromethane 114 5.00 ug/L 100 ND 114 74-126% 1,2-Dibromo-3-chloropropane 98.8 25.0 ug/L 5 100 ND 99 62-128% 1,2-Dibromoethane (EDB) 113 2.50 5 100 ND 113 77-121% ug/L 102 5.00 5 100 Dibromomethane ug/L ND 102 79-123% 5 1,2-Dichlorobenzene 112 2.50 ug/L 100 ND 112 80-120% 5 116 2.50 1,3-Dichlorobenzene ug/L 100 ND 116 80-120% 5 1,4-Dichlorobenzene 100 2.50 ug/L 100 ND 100 79-120% Dichlorodifluoromethane 106 5.00 ug/L 5 100 ND 106 32-152% 1,1-Dichloroethane 97.9 2.00 ug/L 5 100 ND 98 77-125% 1,2-Dichloroethane (EDC) 5 99.3 2.00 99 73-128% ug/L 100 ND 5 1,1-Dichloroethene 118 2.00 ug/L 100 ND 118 71-131% cis-1,2-Dichloroethene 5 102 2.00 100 ND 102 78-123% ug/L trans-1,2-Dichloroethene 2.00 5 105 ug/L 100 ND 105 75-124% 1,2-Dichloropropane 98.2 2.50 ug/L 5 100 2.50 96 78-122% ___ 1,3-Dichloropropane 101 5.00 ug/L 5 100 ND 101 80-120% 128 5.00 5 100 ND 60-139% 2,2-Dichloropropane ug/L 128 117 5 79-125% 1,1-Dichloropropene 5.00 ug/L 100 ND 117 5.00 5 cis-1,3-Dichloropropene 102 ug/L 100 ND 102 75-124% 5.00 5 100 73-127% trans-1,3-Dichloropropene 112 ug/L ND 112 Ethylbenzene 119 2.50 --ug/L 5 100 ND 119 79-121% Hexachlorobutadiene 119 25.0 ug/L 5 100 ND 119 66-134% 171 50.0 5 2-Hexanone ug/L 200 ND 86 57-139% ---Isopropylbenzene 109 5.00 5 72-131% ug/L 100 ND 109 107 5.00 100 ND 4-Isopropyltoluene 5 107 77-127% ug/L Methylene chloride 104 50.0 ug/L 5 100 ND 104 74-124% 183 50.0 5 4-Methyl-2-pentanone (MiBK) ug/L 200 ND 91 67-130% ------Methyl tert-butyl ether (MTBE) 98.4 5.00 ug/L 5 100 ND 98 71-124% Naphthalene 86.9 25.0 5 100 ND 87 61-128% ug/L n-Propylbenzene 114 2.50 ug/L 5 100 ND 114 76-126% 106 5.00 5 Styrene 100 ND 106 78-123% ug/L ---1,1,1,2-Tetrachloroethane 123 2.00 ug/L 5 100 ND 123 78-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0375 - EPA 5030C							Wa	ter				
Matrix Spike (24E0375-MS1)			Prepared	: 05/10/24	06:06 Ana	lyzed: 05/10/	24 12:58					
QC Source Sample: Non-SDG (A41	E1095-02)											
1,1,2,2-Tetrachloroethane	103		2.50	ug/L	5	100	ND	103	71-121%			
Tetrachloroethene (PCE)	122		2.00	ug/L	5	100	ND	122	74-129%			
Toluene	105		5.00	ug/L	5	100	ND	105	80-121%			
1,2,3-Trichlorobenzene	105		10.0	ug/L	5	100	ND	105	69-129%			
1,2,4-Trichlorobenzene	98.0		10.0	ug/L	5	100	ND	98	69-130%			
1,1,1-Trichloroethane	112		2.00	ug/L	5	100	ND	112	74-131%			
1,1,2-Trichloroethane	104		2.50	ug/L	5	100	ND	104	80-120%			
Trichloroethene (TCE)	97.3		2.00	ug/L	5	100	ND	97	79-123%			
Trichlorofluoromethane	116		10.0	ug/L	5	100	ND	116	65-141%			
1,2,3-Trichloropropane	103		5.00	ug/L	5	100	12.1	91	73-122%			
1,2,4-Trimethylbenzene	104		5.00	ug/L	5	100	ND	104	76-124%			
1,3,5-Trimethylbenzene	105		5.00	ug/L	5	100	ND	105	75-124%			
Vinyl chloride	93.4		1.00	ug/L	5	100	ND	93	58-137%			
m,p-Xylene	222		5.00	ug/L	5	200	ND	111	80-121%			
o-Xylene	100		2.50	ug/L	5	100	ND	100	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 95 %	5 % Limits: 80-120 % Dilution: Ix								
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	-120 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0435 - EPA 5030C Water Blank (24E0435-BLK1) Prepared: 05/13/24 09:13 Analyzed: 05/13/24 10:27 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L 1 ug/L Bromodichloromethane ND 1.00 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ---------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ------ND 0.4001,1-Dichloroethane ug/L 1 0.4001,2-Dichloroethane (EDC) ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0435 - EPA 5030C Water Blank (24E0435-BLK1) Prepared: 05/13/24 09:13 Analyzed: 05/13/24 10:27 ND 0.500 1,2-Dichloropropane ug/L 1,3-Dichloropropane ND 1.00 ug/L 1 ---------2,2-Dichloropropane ND 1.00 ug/L 1 1,1-Dichloropropene ND 1.00 ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 trans-1,3-Dichloropropene ND 1.00 ug/L 1 0.500 Ethylbenzene ND ug/L 1 Hexachlorobutadiene ND 5.00 ug/L 1 10.0 2-Hexanone ND ug/L 1 Isopropylbenzene ND 1.00 ug/L 1 4-Isopropyltoluene ND 1.00 ug/L 1 Methylene chloride 10.0 ND ug/L 1 ND 10.0 4-Methyl-2-pentanone (MiBK) ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 Naphthalene ND 5.00 ug/L 1 n-Propylbenzene ND 0.500 ug/L ND 1.00 Stvrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 0.500 1,1,2,2-Tetrachloroethane ND ug/L 1 ------Tetrachloroethene (PCE) ND 0.400 ug/L Toluene ND 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.400ug/L ND 0.500 1,1,2-Trichloroethane ug/L 1 ---------Trichloroethene (TCE) ND 0.400 ug/L Trichlorofluoromethane ND 2.00 ug/L 1 ------1,2,3-Trichloropropane ND 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 1.00 ug/L 1 ---1,3,5-Trimethylbenzene ND 1.00 ug/L 1 Vinyl chloride ND 0.200 ug/L 1 --m,p-Xylene ND 1.00 ug/L 1 o-Xylene ND 0.500 ug/L 1

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Page 27 of 82

Limits: 80-120 %

Recovery: 104 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0435 - EPA 5030C							Wa	ter				
Blank (24E0435-BLK1)			Prepared	1: 05/13/24	09:13 Anal	yzed: 05/13	/24 10:27					
Surr: Toluene-d8 (Surr)		Recov	very: 103 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
LCS (24E0435-BS1)			Prepared	1: 05/13/24	09:13 Anal	yzed: 05/13	/24 09:43					
EPA 8260D												
Acetone	42.2		20.0	ug/L	1	40.0		105	80-120%			
Acrylonitrile	17.4		2.00	ug/L	1	20.0		87	80-120%			
Benzene	19.1		0.200	ug/L	1	20.0		95	80-120%			
Bromobenzene	18.5		0.500	ug/L	1	20.0		93	80-120%			
Bromochloromethane	19.1		1.00	ug/L	1	20.0		96	80-120%			
Bromodichloromethane	19.2		1.00	ug/L	1	20.0		96	80-120%			
Bromoform	21.7		1.00	ug/L	1	20.0		109	80-120%			
Bromomethane	17.7		5.00	ug/L	1	20.0		89	80-120%			
2-Butanone (MEK)	33.7		10.0	ug/L	1	40.0		84	80-120%			
n-Butylbenzene	18.3		1.00	ug/L	1	20.0		91	80-120%			
sec-Butylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			
tert-Butylbenzene	17.8		1.00	ug/L	1	20.0		89	80-120%			
Carbon disulfide	19.1		10.0	ug/L	1	20.0		96	80-120%			
Carbon tetrachloride	22.5		1.00	ug/L	1	20.0		112	80-120%			
Chlorobenzene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Chloroethane	19.3		5.00	ug/L	1	20.0		96	80-120%			
Chloroform	18.8		1.00	ug/L	1	20.0		94	80-120%			
Chloromethane	16.4		5.00	ug/L	1	20.0		82	80-120%			
2-Chlorotoluene	20.0		1.00	ug/L	1	20.0		100	80-120%			
4-Chlorotoluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
Dibromochloromethane	21.8		1.00	ug/L	1	20.0		109	80-120%			
1,2-Dibromo-3-chloropropane	17.5		5.00	ug/L	1	20.0		88	80-120%			
1,2-Dibromoethane (EDB)	21.0		0.500	ug/L	1	20.0		105	80-120%			
Dibromomethane	19.1		1.00	ug/L	1	20.0		95	80-120%			
1,2-Dichlorobenzene	20.5		0.500	ug/L	1	20.0		102	80-120%			
1,3-Dichlorobenzene	21.4		0.500	ug/L	1	20.0		107	80-120%			
1,4-Dichlorobenzene	18.6		0.500	ug/L	1	20.0		93	80-120%			
Dichlorodifluoromethane	18.1		1.00	ug/L	1	20.0		90	80-120%			
1,1-Dichloroethane	18.2		0.400	ug/L	1	20.0		91	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0435 - EPA 5030C Water LCS (24E0435-BS1) Prepared: 05/13/24 09:13 Analyzed: 05/13/24 09:43 1,2-Dichloroethane (EDC) 18.5 0.400 20.0 93 ug/L 80-120% 0.400 1,1-Dichloroethene 20.3 ug/L 1 20.0 102 80-120% -----cis-1,2-Dichloroethene 18.3 0.400 ug/L 1 20.0 92 80-120% trans-1,2-Dichloroethene 18.6 0.400 ug/L 1 20.0 93 80-120% 20.0 1,2-Dichloropropane 16.9 0.50084 80-120% ug/L 1 1,3-Dichloropropane 19.1 1.00 ug/L 1 20.0 96 80-120% 2,2-Dichloropropane 1.00 22.9 --ug/L 1 20.0 115 80-120% 1,1-Dichloropropene 19.7 1.00 ug/L 1 20.0 98 80-120% 1.00 92 cis-1,3-Dichloropropene 18.4 ug/L 1 20.0 80-120% trans-1,3-Dichloropropene 20.8 1.00 ug/L 1 20.0 104 80-120% Ethylbenzene 20.8 0.50020.0 104 80-120% ug/L 1 Hexachlorobutadiene 5.00 20.8 ug/L 1 20.0 104 80-120% 10.0 40.0 O-55 2-Hexanone 30.4 ug/L 1 76 80-120% Isopropylbenzene 18.6 1.00 ug/L 1 20.0 93 80-120% 92 4-Isopropyltoluene 1.00 20.0 18.5 ug/L 1 80-120% Methylene chloride 19.8 10.0 ug/L 20.0 99 80-120% 4-Methyl-2-pentanone (MiBK) 10.0 32.2 ug/L 1 40.0 80 80-120% Methyl tert-butyl ether (MTBE) 18.7 1.00 1 20.0 94 80-120% ug/L Q-55 Naphthalene 15.5 5.00 20.0 77 ug/L 1 80-120% -----n-Propylbenzene 19.8 0.500 ug/L 1 20.0 99 80-120% 18.9 1.00 20.0 94 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 22.9 0.400 ug/L 1 20.0 114 80-120% 1,1,2,2-Tetrachloroethane 19.2 0.500 ug/L 20.0 96 80-120% 1 Tetrachloroethene (PCE) 21.2 0.4001 106 80-120% ug/L 20.0 Toluene 18.7 1.00 20.0 93 ug/L 1 80-120% ---1,2,3-Trichlorobenzene 19.3 2.00 ug/L 1 20.0 97 80-120% 1.2.4-Trichlorobenzene 177 2.00 20.0 88 80-120% ug/L 1 ------1,1,1-Trichloroethane 20.0 0.400 ug/L 1 20.0 100 80-120% 1,1,2-Trichloroethane 19.5 0.500 ug/L 1 20.0 97 80-120% ---Trichloroethene (TCE) 17.2 0.400ug/L 1 20.0 86 80-120% Trichlorofluoromethane 20.8 2.00 20.0 104 80-120% ug/L 1 1,2,3-Trichloropropane 16.9 1.00 ug/L 1 20.0 84 80-120% 1,2,4-Trimethylbenzene 18.4 1.00 ug/L 1 20.0 92 80-120% 1,3,5-Trimethylbenzene 18.5 1.00 ug/L 1 20.0 92 80-120%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0435 - EPA 5030C							Wa	ter				
LCS (24E0435-BS1)			Prepared	1: 05/13/24	09:13 Ana	lyzed: 05/13	/24 09:43					
Vinyl chloride	16.6		0.200	ug/L	1	20.0		83	80-120%			
m,p-Xylene	39.2		1.00	ug/L	1	40.0		98	80-120%			
o-Xylene	17.5		0.500	ug/L	1	20.0		88	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Rec	overy: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
Ouplicate (24E0435-DUP1)			Prepared	1: 05/13/24	10:13 Ana	lyzed: 05/13	/24 18:07					
OC Source Sample: Non-SDG (A4	E0889-03R1	E1)										
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0435 - EPA 5030C							Wat	ter				
Duplicate (24E0435-DUP1)			Prepared	1: 05/13/24	10:13 Ana	lyzed: 05/13/	/24 18:07					
QC Source Sample: Non-SDG (A4E	0889-03R	E1)										
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	11.9		4.00	ug/L	10		10.9			9	30%	
trans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
trans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
Isopropylbenzene	ND		10.0	ug/L	10		ND				30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		100	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	ND		50.0	ug/L	10		ND				30%	
n-Propylbenzene	ND		5.00	ug/L	10		ND				30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	10.9		4.00	ug/L	10		9.80			11	30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2-Trichloroethane	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0435 - EPA 5030C							Wa	ter				
Duplicate (24E0435-DUP1)			Prepared	1: 05/13/24	10:13 Ana	yzed: 05/13	/24 18:07					
QC Source Sample: Non-SDG (A4	E0889-03RI	E <u>1)</u>										
Trichloroethene (TCE)	274		4.00	ug/L	10		243			12	30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		2.00	ug/L	10		ND				30%	
m,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 118 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
QC Source Sample: Non-SDG (A4 EPA 8260D	E1139-01)											
Acetone	50.7		20.0	ug/L	1	40.0	ND	127	39-160%			
Acrylonitrile	19.0		2.00	ug/L	1	20.0	ND	95	63-135%			
Benzene	21.3		0.200	ug/L	1	20.0	ND	106	79-120%			
Bromobenzene	20.0		0.500	ug/L	1	20.0	ND	100	80-120%			
Bromochloromethane	20.9		1.00	ug/L	1	20.0	ND	104	78-123%			
Bromodichloromethane	21.9		1.00	ug/L	1	20.0	ND	110	79-125%			
Bromoform	25.1		1.00	ug/L	1	20.0	ND	126	66-130%			
Bromomethane	15.0		5.00	ug/L	1	20.0	ND	75	53-141%			
2-Butanone (MEK)	39.5		10.0	ug/L	1	40.0	ND	99	56-143%			
n-Butylbenzene	20.5		1.00	ug/L	1	20.0	ND	103	75-128%			
sec-Butylbenzene	21.1		1.00	ug/L	1	20.0	ND	106	77-126%			
tert-Butylbenzene	19.8		1.00	ug/L	1	20.0	ND	99	78-124%			
Carbon disulfide	23.0		10.0	ug/L	1	20.0	ND	115	64-133%			
Carbon tetrachloride	28.4		1.00	ug/L	1	20.0	ND	142	72-136%			(
Chlorobenzene	21.2		0.500	ug/L	1	20.0	ND	106	80-120%			
Chloroethane	21.7		5.00	ug/L	1	20.0	ND	109	60-138%			
Chloroform	20.7		1.00	ug/L	1	20.0	ND	104	79-124%			
					-							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0435 - EPA 5030C							Wa	ter				
Matrix Spike (24E0435-MS1)			Prepared	: 05/13/24	10:13 Anal	lyzed: 05/13	/24 11:54					
QC Source Sample: Non-SDG (A4E	21139-01)											
2-Chlorotoluene	21.6		1.00	ug/L	1	20.0	ND	108	79-122%			
4-Chlorotoluene	21.6		1.00	ug/L	1	20.0	ND	108	78-122%			
Dibromochloromethane	24.4		1.00	ug/L	1	20.0	ND	122	74-126%			
1,2-Dibromo-3-chloropropane	19.5		5.00	ug/L	1	20.0	ND	98	62-128%			
1,2-Dibromoethane (EDB)	22.4		0.500	ug/L	1	20.0	ND	112	77-121%			
Dibromomethane	20.8		1.00	ug/L	1	20.0	ND	104	79-123%			
1,2-Dichlorobenzene	22.4		0.500	ug/L	1	20.0	ND	112	80-120%			
1,3-Dichlorobenzene	23.0		0.500	ug/L	1	20.0	ND	115	80-120%			
1,4-Dichlorobenzene	20.0		0.500	ug/L	1	20.0	ND	100	79-120%			
Dichlorodifluoromethane	20.4		1.00	ug/L	1	20.0	ND	102	32-152%			
1,1-Dichloroethane	19.8		0.400	ug/L	1	20.0	ND	99	77-125%			
1,2-Dichloroethane (EDC)	20.3		0.400	ug/L	1	20.0	ND	101	73-128%			
1,1-Dichloroethene	23.5		0.400	ug/L	1	20.0	ND	118	71-131%			
cis-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0	ND	102	78-123%			
trans-1,2-Dichloroethene	21.4		0.400	ug/L	1	20.0	ND	107	75-124%			
1,2-Dichloropropane	19.2		0.500	ug/L	1	20.0	ND	96	78-122%			
1,3-Dichloropropane	20.0		1.00	ug/L	1	20.0	ND	100	80-120%			
2,2-Dichloropropane	26.4		1.00	ug/L	1	20.0	ND	132	60-139%			
1,1-Dichloropropene	23.3		1.00	ug/L	1	20.0	ND	116	79-125%			
cis-1,3-Dichloropropene	16.6		1.00	ug/L	1	20.0	ND	83	75-124%			
trans-1,3-Dichloropropene	22.4		1.00	ug/L	1	20.0	ND	112	73-127%			
Ethylbenzene	23.4		0.500	ug/L	1	20.0	ND	117	79-121%			
Hexachlorobutadiene	23.8		5.00	ug/L	1	20.0	ND	119	66-134%			
2-Hexanone	33.8		10.0	ug/L	1	40.0	ND	84	57-139%			Q-
Isopropylbenzene	21.3		1.00	ug/L	1	20.0	ND	107	72-131%			
4-Isopropyltoluene	20.7		1.00	ug/L	1	20.0	ND	104	77-127%			
Methylene chloride	21.1		10.0	ug/L	1	20.0	ND	106	74-124%			
4-Methyl-2-pentanone (MiBK)	36.2		10.0	ug/L	1	40.0	ND	90	67-130%			
Methyl tert-butyl ether (MTBE)	20.4		1.00	ug/L	1	20.0	ND	102	71-124%			
Naphthalene	17.0		5.00	ug/L	1	20.0	ND	85	61-128%			Ç
n-Propylbenzene	22.1		0.500	ug/L	1	20.0	ND	111	76-126%			
Styrene	21.2		1.00	ug/L	1	20.0	ND	106	78-123%			
1,1,2-Tetrachloroethane	25.6		0.400	ug/L	1	20.0	ND	128	78-124%			C

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam
650 NE Holladay St, Ste 900 Project Number: 00464.020
Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting % REC RPD Spike Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0435 - EPA 5030C Water Matrix Spike (24E0435-MS1) Prepared: 05/13/24 10:13 Analyzed: 05/13/24 11:54 QC Source Sample: Non-SDG (A4E1139-01) 1,1,2,2-Tetrachloroethane 20.2 0.500 ug/L 1 20.0 ND 101 71-121% ug/L Tetrachloroethene (PCE) 0.400 20.0 74-129% 24.6 1 ND 123 80-121% Toluene 20.6 1.00 ug/L 1 20.0 ND 103 1,2,3-Trichlorobenzene 20.7 2.00 ug/L 1 20.0 ND 103 69-129% 1,2,4-Trichlorobenzene 19.1 2.00 ug/L 1 20.0 ND 96 69-130% 1,1,1-Trichloroethane 22.3 0.40020.0 74-131% ug/L 1 ND 111 0.500 1,1,2-Trichloroethane 20.6 ug/L 1 20.0 ND 103 80-120% Trichloroethene (TCE) 19.8 0.40020.0 99 79-123% ug/L 1 ND Trichlorofluoromethane 23.7 2.00 ug/L 1 20.0 ND 119 65-141% 1,2,3-Trichloropropane 18.7 1.00 ug/L 1 20.0 ND 94 73-122% 1,2,4-Trimethylbenzene 20.2 1.00 ug/L 1 20.0 ND 101 76-124% 1,3,5-Trimethylbenzene 1.00 20.4 20.0 102 75-124% ug/L 1 ND 18.2 0.200 20.0 91 58-137% Vinyl chloride ug/L ND 1.00 40.0 m,p-Xylene 44.4 ug/L ND 111 80-121% 1 o-Xylene 0.500 78-122% 19.7 ug/L ND Surr: 1,4-Difluorobenzene (Surr) 98 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 94 % 80-120 % 4-Bromofluorobenzene (Surr) 93 % 80-120 %

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0175 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0175-BLK1) Prepared: 05/06/24 06:20 Analyzed: 05/06/24 14:17 EPA 8270E 0.0306 0.0200ug/L B, Q-30 Acenaphthene ND 0.0200 ug/L Acenaphthylene ---1 ---Anthracene ND 0.0200 ug/L 1 Benz(a)anthracene ND 0.0200 ug/L 1 Benzo(a)pyrene ND 0.0300 ug/L ug/L ND 0.0300 Benzo(b)fluoranthene 1 ------Benzo(k)fluoranthene ND 0.0300 ug/L 0.0200 Benzo(g,h,i)perylene ND ug/L 1 ---Chrysene ND 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.0200 ug/L 1 Fluoranthene ND 0.0200 ug/L 1 ND 0.0200 ug/LO-30 Fluorene 1 ---------Indeno(1,2,3-cd)pyrene ND 0.0200 ug/L 1-Methylnaphthalene ND 0.0400 B-02, Q-30 ug/L 1 2-Methylnaphthalene ND 0.0400ug/L 1 Q-30 Naphthalene ND 0.0400 ug/L 1 B-02, Q-30 ---------------Phenanthrene ND 0.0200ug/L 1 Pyrene ND 0.0200 ug/L 1 ------------Carbazole ND 0.0300 ug/L 1 ------Dibenzofuran ND 0.0200 ug/L 1 Q-30 2-Chlorophenol ND 0.100 ug/L 1 ug/L 4-Chloro-3-methylphenol ND 0.200 1 ---2,4-Dichlorophenol ND 0.100 ug/L 1 2,4-Dimethylphenol ND 0.500 ug/L 1 2,4-Dinitrophenol 0.500 ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.500 ug/L 1 2-Methylphenol ND 0.0500ug/L 1 0.0500 3+4-Methylphenol(s) ND ug/L 1 ------2-Nitrophenol ND 0.200 ug/L 1 0.200 4-Nitrophenol ND ug/L 1 Pentachlorophenol (PCP) ND 0.200 ug/L 1 Phenol ND 0.400 ug/L 1 2,3,4,6-Tetrachlorophenol ND 0.100 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0175 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0175-BLK1) Prepared: 05/06/24 06:20 Analyzed: 05/06/24 14:17 2,3,5,6-Tetrachlorophenol ND 0.100 ug/L 0.100 2,4,5-Trichlorophenol ND ug/L 1 ---------2,4,6-Trichlorophenol ND 0.100 ug/L 1 Bis(2-ethylhexyl)phthalate ND 0.400 ug/L 1 Butyl benzyl phthalate ND 0.400 ug/L 1 Diethylphthalate ND 0.400 ug/L 1 0.400 Dimethylphthalate ND ug/L 1 ND 0.400 Di-n-butylphthalate ug/L 1 0.400 Di-n-octyl phthalate ND ug/L 1 N-Nitrosodimethylamine ND 0.0500 ug/L 1 Q-30 ND 0.0500 N-Nitroso-di-n-propylamine ug/L 1 0.0500 N-Nitrosodiphenylamine ND ug/L 1 ND 0.0500 Bis(2-Chloroethoxy) methane ug/L 1 ------Bis(2-Chloroethyl) ether ND 0.0500ug/L 1 Q-30 2,2'-Oxybis(1-Chloropropane) ND 0.0500 Q-30 ug/L 1 ---Hexachlorobenzene ND 0.0200ug/L Hexachlorobutadiene ND 0.0500 O-30 ug/L 1 Hexachlorocyclopentadiene ND 0.100 ug/L 1 0.0500 Q-30 Hexachloroethane ND ug/L 1 ------2-Chloronaphthalene ND 0.0200ug/L Q-30 1,2,4-Trichlorobenzene ND 0.0500 Q-30 ug/L 1 ------4-Bromophenyl phenyl ether ND 0.0500 ug/L 1 4-Chlorophenyl phenyl ether ND 0.0500 ug/L Q-30 1 Aniline ND 0.100 ug/L ND 0.0500 4-Chloroaniline ug/L 1 ---------------2-Nitroaniline ND 0.400 ug/L 3-Nitroaniline ND 0.400 ug/L 1 ------4-Nitroaniline ND 0.400 ug/L 1 Nitrobenzene ND 0.200 ug/L 1 ---2,4-Dinitrotoluene ND 0.200 ug/L 1 2,6-Dinitrotoluene ND 0.200 Q-30 ug/L 1 ---Benzoic acid ND 2.50 ug/L 1 Benzyl alcohol ND 0.200 ug/L 1 Isophorone ND 0.0500ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
Blank (24E0175-BLK1)			Prepared	: 05/06/24	06:20 Ana	lyzed: 05/06	/24 14:17					
Azobenzene (1,2-DPH)	ND		0.0500	ug/L	1							Q-30
Bis(2-Ethylhexyl) adipate	ND		0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND		1.00	ug/L	1							Q-52
1,2-Dinitrobenzene	ND		0.500	ug/L	1							
1,3-Dinitrobenzene	ND		0.500	ug/L	1							
1,4-Dinitrobenzene	ND		0.500	ug/L	1							
Pyridine	ND		0.200	ug/L	1							
1,2-Dichlorobenzene	ND		0.0500	ug/L	1							Q-30
1,3-Dichlorobenzene	ND		0.0500	ug/L	1							Q-30
1,4-Dichlorobenzene	ND		0.0500	ug/L	1							Q-30
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 65 %	Limits: 44	4-120 %	Dili	ution: 1x					Q-41
2-Fluorobiphenyl (Surr)			59 %	44	1-120 %		"					~
Phenol-d6 (Surr)			29 %	10)-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			89 %	50	0-134 %		"					~
2-Fluorophenol (Surr)			35 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			68 %	43	B-140 %		"					
LCS (24E0175-BS1)			Prepared	: 05/06/24	06:20 Ana	lyzed: 05/06	/24 14:54					
EPA 8270E												
Acenaphthene	1.63		0.0800	ug/L	4	4.00		41	47-122%			Q-30, I
Acenaphthylene	1.84		0.0800	ug/L	4	4.00		46	41-130%			
Anthracene	2.71		0.0800	ug/L	4	4.00		68	57-123%			
Benz(a)anthracene	3.10		0.0800	ug/L	4	4.00		78	58-125%			
Benzo(a)pyrene	3.37		0.120	ug/L	4	4.00		84	54-128%			
Benzo(b)fluoranthene	3.24		0.120	ug/L	4	4.00		81	53-131%			
Benzo(k)fluoranthene	3.26		0.120	ug/L	4	4.00		82	57-129%			
Benzo(g,h,i)perylene	3.14		0.0800	ug/L	4	4.00		78	50-134%			
Chrysene	3.22		0.0800	ug/L	4	4.00		80	59-123%			
Dibenz(a,h)anthracene	3.10		0.0800	ug/L	4	4.00		77	51-134%			
Fluoranthene	3.15		0.0800	ug/L	4	4.00		79	57-128%			
Fluorene	2.04		0.0800	ug/L	4	4.00		51	52-124%			Q-3
Indeno(1,2,3-cd)pyrene	3.01		0.0800	ug/L	4	4.00		75	52-134%			
1-Methylnaphthalene	1.30		0.160	ug/L	4	4.00		33	41-120%			B-02, Q-30
2-Methylnaphthalene	1.22		0.160	ug/L	4	4.00		30	40-121%			Q-30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 37 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0175 - EPA 3510C (Acid/Base Neutral) Water LCS (24E0175-BS1) Prepared: 05/06/24 06:20 Analyzed: 05/06/24 14:54 1.05 0.160 4.00 26 Q-30, B-02 Naphthalene ug/L 40-121% 0.0800 Phenanthrene 2.67 ug/L 4 4.00 67 59-120% ------Pyrene 3.09 0.0800ug/L 4 4.00 77 57-126% Carbazole 3.24 0.120 ug/L 4 4.00 81 60-122% 4 Q-30 Dibenzofuran 1.86 0.0800ug/L 4.00 47 53-120% 4 2-Chlorophenol 1.76 0.400 ug/L 4.00 44 38-120% 0.8004 4-Chloro-3-methylphenol 2.48 --ug/L 4.00 62 52-120% 0.400 4 Q-41 2,4-Dichlorophenol 2.36 ug/L 4.00 59 47-121% 1.00 4 2,4-Dimethylphenol 1.98 ug/L 4.00 50 31-124% 2,4-Dinitrophenol 1.65 1.00 ug/L 4 4.00 41 23-143% 4 4,6-Dinitro-2-methylphenol 2.44 2.00 4.00 61 44-137% ug/L 0.200 4 Q-41 2-Methylphenol 1.84 ug/L 4.00 46 30-120% 4 29-120% 3+4-Methylphenol(s) 1.99 0.200 4.00 50 O-41 ug/L 2-Nitrophenol 2.44 0.800ug/L 4 4.00 61 47-123% 4 4-Nitrophenol 0.983 0.800 4.00 25 10-120% ug/L Pentachlorophenol (PCP) 2.24 0.800ug/L 4 4.00 56 35-138% Phenol 0.884 0.800 4 22 Q-41 ug/L 4.00 10-120% 2,3,4,6-Tetrachlorophenol 2.74 0.400 4 68 50-128% ug/L 4.00 0.400 4 2,3,5,6-Tetrachlorophenol 2.63 4.00 ug/L 66 50-121% ---2,4,5-Trichlorophenol 2.43 0.400 ug/L 4 4.00 61 53-123% 2,4,6-Trichlorophenol 2.08 0.400 4 4 00 52 50-125% ug/L Bis(2-ethylhexyl)phthalate 3.30 1.60 ug/L 4 4.00 82 55-135% Butyl benzyl phthalate 3.26 1.60 ug/L 4 4.00 82 53-134% Diethylphthalate 2.64 1.60 ug/L 4 4.00 56-125% 66 2.30 1.60 4 4.00 58 Dimethylphthalate ug/L 45-127% ---Di-n-butylphthalate 3.18 1.60 ug/L 4 4.00 80 59-127% Di-n-octyl phthalate 3.11 1.60 4 4 00 78 51-140% ug/L ------N-Nitrosodimethylamine 0.804 0.200 ug/L 4 4.00 20 19-120% N-Nitroso-di-n-propylamine 1.88 0.200 ug/L 4 4.00 47 49-120% Q-30 ---N-Nitrosodiphenylamine 2.77 0.200 ug/L 4 4.00 69 51-123% Bis(2-Chloroethoxy) methane 2.16 0.200 4 4.00 54 48-120% ug/L Q-30 Bis(2-Chloroethyl) ether 1.48 0.200 ug/L 4 4.00 37 43-120% 2,2'-Oxybis(1-Chloropropane) 1.47 0.200 ug/L 4 4.00 37 41-120% Q-30 0.0800Hexachlorobenzene 2.47 ug/L 4 4.00 62 53-125%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 38 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0175 - EPA 3510C (Acid/Base Neutral) Water LCS (24E0175-BS1) Prepared: 05/06/24 06:20 Analyzed: 05/06/24 14:54 0.307 0.200 4.00 8 22-124% Q-30 Hexachlorobutadiene ug/L 0.400 Hexachlorocyclopentadiene 0.419 ug/L 4 4.00 10 10-127% ---Q-30 Hexachloroethane 0.308 0.200 ug/L 4 4.00 8 21-120% 2-Chloronaphthalene 1.43 0.0800 ug/L 4 4.00 36 40-120% Q-30 1,2,4-Trichlorobenzene 0.646 0.200 4 4.00 Q-30 ug/L 16 29-120% 4 4-Bromophenyl phenyl ether 2.33 0.200 ug/L 4.00 58 55-124% 4-Chlorophenyl phenyl ether O-30 1.91 0.200 ug/L 4 4.00 48 53-121% 0.400 4 Aniline 1.68 ug/L 4.00 42 10-120% 0.200 4-Chloroaniline 2.51 ug/L 4 4.00 63 33-120% 2-Nitroaniline 2.34 1.60 ug/L 4 4.00 59 55-127% 4 2.51 4.00 63 41-128% 3-Nitroaniline 1.60 ug/L 4 4-Nitroaniline 3.13 1.60 ug/L 4.00 78 25-120% Nitrobenzene 0.800 4 4.00 45-121% O-41 1.81 ug/L 45 2,4-Dinitrotoluene 2.85 0.800 ug/L 4 4.00 71 57-128% 4 Q-30 2,6-Dinitrotoluene 2.26 0.800 ug/L 4.00 56 57-124% Benzoic acid 1.28 0.400 ug/L 4 8.00 16 10-120% Q-31 Benzyl alcohol 0.800 4 Q-41 1.83 4.00 31-120% ug/L 46 1.95 0.200 4 49 42-124% Isophorone ug/L 4.00 4 56 Q-30 Azobenzene (1,2-DPH) 2.23 0.200 ug/L 4.00 61-120% ---Bis(2-Ethylhexyl) adipate 3.14 2.00 ug/L 4 4.00 78 63-121% 3,3'-Dichlorobenzidine 13.9 4 00 4 8.00 174 27-129% Q-29, Q-52 ug/L 1,2-Dinitrobenzene 2.50 2.00 ug/L 4 4.00 62 59-120% 1,3-Dinitrobenzene 2.41 2.00 ug/L 4 4.00 60 49-128% 1,4-Dinitrobenzene 2.22 2.00 4 4.00 55 54-120% ug/L 0.658 0.400 4 4.00 Q-31 Pyridine ug/L 16 10-120% ---1,2-Dichlorobenzene 0.513 0.200 ug/L 4 4.00 13 32-120% Q-30 1.3-Dichlorobenzene 0.435 0.200 4 4 00 11 28-120% Q-30 ug/L ------1,4-Dichlorobenzene 0.480 0.200 ug/L 4 4.00 12 29-120% Q-30 Surr: Nitrobenzene-d5 (Surr) Recovery: 48~%Limits: 44-120 % Dilution: 4x 0-41 39 % 2-Fluorobiphenyl (Surr) 44-120 % S-06 Phenol-d6 (Surr) 20 % 10-133 % O-41 p-Terphenyl-d14 (Surr) 80 % 50-134 % 2-Fluorophenol (Surr) 23 % 19-120 % 2,4,6-Tribromophenol (Surr) 74 % 43-140 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic	Compoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (Acid/Base	Neutral)					Wa	iter				
Matrix Spike (24E0175-MS1)			Prepared	: 05/06/24	06:20 Anal	yzed: 05/06	/24 16:10					
OC Source Sample: Non-SDG (A-EPA 8270E	4E0805-06)											
Acenaphthene	152		0.385	ug/L	20	3.85	155	-65	47-122%			Q-03, I
Acenaphthylene	5.99		2.31	ug/L	20	3.85	ND	90	41-130%			
Anthracene	21.7		0.385	ug/L	20	3.85	18.4	85	57-123%			
Benz(a)anthracene	9.88		0.385	ug/L	20	3.85	6.49	88	58-125%			
Benzo(a)pyrene	6.27		0.577	ug/L	20	3.85	2.35	102	54-128%			
Benzo(b)fluoranthene	6.77		0.577	ug/L	20	3.85	3.29	91	53-131%			
Benzo(k)fluoranthene	5.21		0.577	ug/L	20	3.85	1.24	103	57-129%			
Benzo(g,h,i)perylene	4.02		0.385	ug/L	20	3.85	0.504	92	50-134%			
Chrysene	10.1		0.385	ug/L	20	3.85	6.62	92	59-123%			
Dibenz(a,h)anthracene	3.61		0.385	ug/L	20	3.85	ND	94	51-134%			
Fluoranthene	50.4		0.385	ug/L	20	3.85	48.5	50	57-128%			Q-03
Fluorene	83.7		0.385	ug/L	20	3.85	82.8	24	52-124%			Q-03
Indeno(1,2,3-cd)pyrene	4.06		0.385	ug/L	20	3.85	0.674	88	52-134%			
1-Methylnaphthalene	95.1		0.769	ug/L	20	3.85	110	-399	41-120%			Q-03, B-02
2-Methylnaphthalene	7.08		0.769	ug/L	20	3.85	20.4	-347	40-121%			Q-03
Naphthalene	3.74		0.962	ug/L	20	3.85	ND	97	40-121%			B-02
Phenanthrene	116		0.385	ug/L	20	3.85	123	-169	59-120%			Q-03
Pyrene	40.2		0.385	ug/L	20	3.85	37.8	60	57-126%			
Carbazole	4.54		0.962	ug/L	20	3.85	ND	118	60-122%			
Dibenzofuran	58.7		0.385	ug/L	20	3.85	59.6	-25	53-120%			Q-03
2-Chlorophenol	2.81		1.92	ug/L	20	3.85	ND	73	38-120%			
4-Chloro-3-methylphenol	6.43		3.85	ug/L	20	3.85	ND	167	52-120%			Q-1
2,4-Dichlorophenol	3.45		1.92	ug/L	20	3.85	ND	50	47-121%			Q-4
2,4-Dimethylphenol	ND		9.62	ug/L	20	3.85	ND	146	31-124%			Q-0
2,4-Dinitrophenol	ND		9.62	ug/L	20	3.85	ND	163	23-143%			Q-1
4,6-Dinitro-2-methylphenol	ND		9.62	ug/L	20	3.85	ND		44-137%			Q-1
2-Methylphenol	3.62		0.962	ug/L	20	3.85	ND	68	30-120%			Q-4
3+4-Methylphenol(s)	4.42		1.73	ug/L	20	3.85	ND	69	29-120%			Q-4
2-Nitrophenol	5.16		3.85	ug/L	20	3.85	ND	83	47-123%			
4-Nitrophenol	4.35		3.85	ug/L	20	3.85	ND	-8	10-120%			Q-1
Pentachlorophenol (PCP)	18.1		3.85	ug/L	20	3.85	12.8	137	35-138%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		56	emivolatile	organic	compour	ius by EP/	4 82/UE					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (A	cid/Base	Neutral)					Wa	ter				
Matrix Spike (24E0175-MS1)			Prepared	1: 05/06/24	06:20 Ana	lyzed: 05/06/	/24 16:10					
QC Source Sample: Non-SDG (A4	E0805-06)											
Phenol	ND		7.69	ug/L	20	3.85	ND		10-120%			Q-41, Q-1
2,3,4,6-Tetrachlorophenol	4.78		1.92	ug/L	20	3.85	ND	124	50-128%			
2,3,5,6-Tetrachlorophenol	4.74		1.92	ug/L	20	3.85	ND	123	50-121%			Q-(
2,4,5-Trichlorophenol	4.23		1.92	ug/L	20	3.85	ND	110	53-123%			
2,4,6-Trichlorophenol	4.06		1.92	ug/L	20	3.85	ND	106	50-125%			
Bis(2-ethylhexyl)phthalate	13.9		7.69	ug/L	20	3.85	10.2	95	55-135%			
Butyl benzyl phthalate	ND		7.69	ug/L	20	3.85	ND		53-134%			Q-1
Diethylphthalate	ND		7.69	ug/L	20	3.85	ND		56-125%			Q-1
Dimethylphthalate	ND		7.69	ug/L	20	3.85	ND	101	45-127%			
Di-n-butylphthalate	ND		7.69	ug/L	20	3.85	ND	100	59-127%			
Di-n-octyl phthalate	ND		7.69	ug/L	20	3.85	ND	104	51-140%			
N-Nitrosodimethylamine	0.974		0.962	ug/L	20	3.85	ND	25	19-120%			
N-Nitroso-di-n-propylamine	4.25		0.962	ug/L	20	3.85	ND	111	49-120%			
N-Nitrosodiphenylamine	13.0		9.04	ug/L	20	3.85	ND	73	51-123%			
Bis(2-Chloroethoxy) methane	5.86		2.12	ug/L	20	3.85	ND	93	48-120%			
Bis(2-Chloroethyl) ether	2.64		0.962	ug/L	20	3.85	ND	69	43-120%			
2,2'-Oxybis(1-Chloropropane)	2.59		0.962	ug/L	20	3.85	ND	67	41-120%			
Hexachlorobenzene	3.97		0.385	ug/L	20	3.85	ND	103	53-125%			
Hexachlorobutadiene	2.39		0.962	ug/L	20	3.85	ND	62	22-124%			
Hexachlorocyclopentadiene	4.19		1.92	ug/L	20	3.85	ND	109	10-127%			
Hexachloroethane	1.67		0.962	ug/L	20	3.85	ND	43	21-120%			
2-Chloronaphthalene	4.30		0.769	ug/L	20	3.85	ND	112	40-120%			
1,2,4-Trichlorobenzene	2.55		0.962	ug/L	20	3.85	ND	66	29-120%			
4-Bromophenyl phenyl ether	3.86		0.962	ug/L	20	3.85	ND	100	55-124%			
4-Chlorophenyl phenyl ether	3.69		0.962	ug/L	20	3.85	ND	96	53-121%			
Aniline	2.32		1.92	ug/L	20	3.85	ND	60	10-120%			
4-Chloroaniline	3.83		0.962	ug/L	20	3.85	ND	73	33-120%			
2-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		55-127%			Q-1
3-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		41-128%			Q-1
4-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		25-120%			Q-1
Nitrobenzene	4.93		3.85	ug/L	20	3.85	ND	72	45-121%			Q-4
2,4-Dinitrotoluene	6.15		3.85	ug/L	20	3.85	ND	160	57-128%			Q-1
2,6-Dinitrotoluene	6.02		3.85	ug/L	20	3.85	ND	156	57-124%			Q-1

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

D.												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Matrix Spike (24E0175-MS1)			Prepared	1: 05/06/24	06:20 Anal	yzed: 05/06	/24 16:10					
QC Source Sample: Non-SDG (A4	E0805-06)											
Benzoic acid	ND		48.1	ug/L	20	7.69	ND	-11	10-120%			Q-11, Q-3
Benzyl alcohol	ND		3.85	ug/L	20	3.85	ND	66	31-120%			Q-4
Isophorone	4.14		0.962	ug/L	20	3.85	ND	81	42-124%			
Azobenzene (1,2-DPH)	4.00		0.962	ug/L	20	3.85	ND	78	61-120%			
Bis(2-Ethylhexyl) adipate	ND		9.62	ug/L	20	3.85	ND		63-121%			Q-1
3,3'-Dichlorobenzidine	ND		19.2	ug/L	20	7.69	ND		27-129%			Q-11, Q-5
1,2-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND		59-120%			Q-1
1,3-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND		49-128%			Q-1
1,4-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND	-12	54-120%			Q-1
Pyridine	ND		3.85	ug/L	20	3.85	ND		10-120%			Q-01, Q-3
1,2-Dichlorobenzene	1.81		0.962	ug/L	20	3.85	ND	47	32-120%			
1,3-Dichlorobenzene	1.67		0.962	ug/L	20	3.85	ND	43	28-120%			
1,4-Dichlorobenzene	1.78		0.962	ug/L	20	3.85	ND	46	29-120%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 74 %	Limits: 44	4-120 %	Dilı	ution: 20x					Q-41
2-Fluorobiphenyl (Surr)			86 %	44	1-120 %		"					2 '
Phenol-d6 (Surr)			23 %	10)-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			84 %	50)-134 %		"					2 '
2-Fluorophenol (Surr)			29 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			115 %	43	3-140 %		"					
Matrix Spike Dup (24E0175-M	ISD1)		Prepared	1: 05/06/24	06:20 Anal	yzed: 05/06	/24 16:46					
QC Source Sample: Non-SDG (A4	IE0805-06)											
Acenaphthene	156		0.385	ug/L	20	3.85	155	31	47-122%	2	30%	Q-03, 1
Acenaphthylene	5.81		2.31	ug/L	20	3.85	ND	85	41-130%	3	30%	
Anthracene	21.2		0.385	ug/L	20	3.85	18.4	73	57-123%	2	30%	
Benz(a)anthracene	9.54		0.385	ug/L	20	3.85	6.49	79	58-125%	4	30%	
Benzo(a)pyrene	5.89		0.577	ug/L	20	3.85	2.35	92	54-128%	6	30%	
Benzo(b)fluoranthene	6.33		0.577	ug/L	20	3.85	3.29	79	53-131%	7	30%	
Benzo(k)fluoranthene	4.78		0.577	ug/L	20	3.85	1.24	92	57-129%	9	30%	
Benzo(g,h,i)perylene	3.75		0.385	ug/L	20	3.85	0.504	84	50-134%	7	30%	
Chrysene	9.58		0.385	ug/L	20	3.85	6.62	77	59-123%	6	30%	
Dibenz(a,h)anthracene	3.47		0.385	ug/L	20	3.85	ND	90	51-134%	4	30%	
Fluoranthene	48.5		0.385	ug/L	20	3.85	48.5	-1	57-128%	4	30%	O-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 42 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		56	mivolatile (organic	Compoun	ius by EP	A 82/UE					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
Matrix Spike Dup (24E0175-N	(ISD1)		Prepared	: 05/06/24	06:20 Anal	lyzed: 05/06	/24 16:46					
QC Source Sample: Non-SDG (A	4E0805-06)											
Fluorene	83.2		0.385	ug/L	20	3.85	82.8	10	52-124%	0.6	30%	Q-0
Indeno(1,2,3-cd)pyrene	3.78		0.385	ug/L	20	3.85	0.674	81	52-134%	7	30%	
1-Methylnaphthalene	114		0.769	ug/L	20	3.85	110	80	41-120%	18	30%	B-0
2-Methylnaphthalene	8.36		0.769	ug/L	20	3.85	20.4	-314	40-121%	17	30%	Q-0
Naphthalene	3.59		0.962	ug/L	20	3.85	ND	93	40-121%	4	30%	B-0
Phenanthrene	112		0.385	ug/L	20	3.85	123	-274	59-120%	4	30%	Q-0
Pyrene	38.6		0.385	ug/L	20	3.85	37.8	21	57-126%	4	30%	Q-0
Carbazole	4.98		0.962	ug/L	20	3.85	ND	130	60-122%	9	30%	Q-0
Dibenzofuran	61.5		0.385	ug/L	20	3.85	59.6	49	53-120%	5	30%	Q-0
2-Chlorophenol	2.75		1.92	ug/L	20	3.85	ND	71	38-120%	2	30%	
4-Chloro-3-methylphenol	6.71		3.85	ug/L	20	3.85	ND	175	52-120%	4	30%	Q-1
2,4-Dichlorophenol	3.16		1.92	ug/L	20	3.85	ND	82	47-121%	9	30%	Q-4
2,4-Dimethylphenol	ND		9.62	ug/L	20	3.85	ND	148	31-124%	2	30%	Q-0
2,4-Dinitrophenol	ND		9.62	ug/L	20	3.85	ND	159	23-143%	2	30%	Q-1
4,6-Dinitro-2-methylphenol	ND		9.62	ug/L	20	3.85	ND		44-137%		30%	Q-1
2-Methylphenol	3.58		0.962	ug/L	20	3.85	ND	67	30-120%	1	30%	Q-4
3+4-Methylphenol(s)	4.42		4.23	ug/L	20	3.85	ND	115	29-120%	0.07	30%	Q-4
2-Nitrophenol	6.85		3.85	ug/L	20	3.85	ND	127	47-123%	28	30%	Q-1
4-Nitrophenol	4.16		3.85	ug/L	20	3.85	ND	-13	10-120%	200	30%	Q-1
Pentachlorophenol (PCP)	17.6		3.85	ug/L	20	3.85	12.8	124	35-138%	3	30%	
Phenol	ND		7.69	ug/L	20	3.85	ND		10-120%		30%	Q-11, Q-4
2,3,4,6-Tetrachlorophenol	4.58		1.92	ug/L	20	3.85	ND	119	50-128%	4	30%	
2,3,5,6-Tetrachlorophenol	4.63		1.92	ug/L	20	3.85	ND	120	50-121%	2	30%	
2,4,5-Trichlorophenol	4.16		1.92	ug/L	20	3.85	ND	108	53-123%	2	30%	
2,4,6-Trichlorophenol	3.99		1.92	ug/L	20	3.85	ND	104	50-125%	2	30%	
Bis(2-ethylhexyl)phthalate	13.1		7.69	ug/L	20	3.85	10.2	75	55-135%	6	30%	
Butyl benzyl phthalate	ND		7.69	ug/L	20	3.85	ND		53-134%		30%	Q-1
Diethylphthalate	ND		7.69	ug/L	20	3.85	ND		56-125%		30%	Q-1
Dimethylphthalate	ND		7.69	ug/L	20	3.85	ND		45-127%		30%	Q-1
Di-n-butylphthalate	ND		7.69	ug/L	20	3.85	ND		59-127%		30%	Q-1
Di-n-octyl phthalate	ND		7.69	ug/L	20	3.85	ND		51-140%		30%	Q-1
N-Nitrosodimethylamine	ND		0.962	ug/L	20	3.85	ND	25	19-120%	1	30%	`
N-Nitroso-di-n-propylamine	4.28		0.962	ug/L	20	3.85	ND	111	49-120%	0.6	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile (gaino	_ Jpoul	wy =1 /						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0175 - EPA 3510C (A	cid/Base	Neutral)					Wa	ter				
Matrix Spike Dup (24E0175-M	SD1)		Prepared	: 05/06/24	06:20 Anal	lyzed: 05/06	/24 16:46					
QC Source Sample: Non-SDG (A4	E0805-06)											
N-Nitrosodiphenylamine	19.2		9.04	ug/L	20	3.85	ND	233	51-123%	38	30%	Q-0
Bis(2-Chloroethoxy) methane	5.97		0.769	ug/L	20	3.85	ND	96	48-120%	2	30%	
Bis(2-Chloroethyl) ether	2.52		0.962	ug/L	20	3.85	ND	65	43-120%	5	30%	
2,2'-Oxybis(1-Chloropropane)	2.48		0.962	ug/L	20	3.85	ND	65	41-120%	4	30%	
Hexachlorobenzene	3.69		0.385	ug/L	20	3.85	ND	96	53-125%	7	30%	
Hexachlorobutadiene	1.92		0.962	ug/L	20	3.85	ND	50	22-124%	22	30%	
Hexachlorocyclopentadiene	3.41		1.92	ug/L	20	3.85	ND	89	10-127%	21	30%	
Hexachloroethane	1.60		0.962	ug/L	20	3.85	ND	42	21-120%	4	30%	
2-Chloronaphthalene	3.94		0.769	ug/L	20	3.85	ND	103	40-120%	9	30%	
1,2,4-Trichlorobenzene	2.19		0.962	ug/L	20	3.85	ND	57	29-120%	15	30%	
4-Bromophenyl phenyl ether	3.84		0.962	ug/L	20	3.85	ND	100	55-124%	0.6	30%	
4-Chlorophenyl phenyl ether	3.45		0.962	ug/L	20	3.85	ND	90	53-121%	7	30%	
Aniline	2.14		1.92	ug/L	20	3.85	ND	56	10-120%	8	30%	
4-Chloroaniline	3.41		0.962	ug/L	20	3.85	ND	62	33-120%	12	30%	
2-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		55-127%		30%	Q-1
3-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		41-128%		30%	Q-1
4-Nitroaniline	ND		7.69	ug/L	20	3.85	ND		25-120%		30%	Q-1
Nitrobenzene	5.18		3.85	ug/L	20	3.85	ND	79	45-121%	5	30%	Q-4
2,4-Dinitrotoluene	6.16		3.85	ug/L	20	3.85	ND	160	57-128%	0.2	30%	Q-1
2,6-Dinitrotoluene	5.92		3.85	ug/L	20	3.85	ND	154	57-124%	2	30%	Q-1
Benzoic acid	ND		48.1	ug/L	20	7.69	ND	7	10-120%	200	30%	Q-11, Q-3
Benzyl alcohol	ND		3.85	ug/L	20	3.85	ND	77	31-120%	16	30%	Q-4
Isophorone	3.86		0.962	ug/L	20	3.85	ND	74	42-124%	7	30%	
Azobenzene (1,2-DPH)	3.63		0.962	ug/L	20	3.85	ND	69	61-120%	10	30%	
Bis(2-Ethylhexyl) adipate	ND		9.62	ug/L	20	3.85	ND		63-121%		30%	Q-1
3,3'-Dichlorobenzidine	ND		19.2	ug/L	20	7.69	ND		27-129%		30%	Q-11, Q-5
1,2-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND		59-120%		30%	Q-1
1,3-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND		49-128%		30%	Q-1
1,4-Dinitrobenzene	ND		9.62	ug/L	20	3.85	ND		54-120%		30%	Q-1
Pyridine	ND		3.85	ug/L	20	3.85	ND		10-120%		30%	Q-01, Q-3
1,2-Dichlorobenzene	1.68		0.962	ug/L	20	3.85	ND	44	32-120%	7	30%	
1,3-Dichlorobenzene	1.56		0.962	ug/L	20	3.85	ND	41	28-120%	6	30%	
1,4-Dichlorobenzene	1.66		0.962	ug/L	20	3.85	ND	43	29-120%	7	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC RPD Limits RPD Analyte Result Limit Units Dilution % REC Limit Notes Limit Amount Result Batch 24E0175 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike Dup (24E0175-MSD1) Prepared: 05/06/24 06:20 Analyzed: 05/06/24 16:46 QC Source Sample: Non-SDG (A4E0805-06) Surr: Nitrobenzene-d5 (Surr) Recovery: 85 % Limits: 44-120 % Dilution: 20x Q-41 2-Fluorobiphenyl (Surr) 84 % 44-120 % Phenol-d6 (Surr) 24 % 10-133 % Q-41 50-134 % p-Terphenyl-d14 (Surr) 83 % 2-Fluorophenol (Surr) 32 % 19-120 % 2,4,6-Tribromophenol (Surr) 119 % 43-140 %

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0302 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0302-BLK1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 12:40 EPA 8270E ND 0.0200ug/L Acenaphthene ND 0.0200 ug/L Acenaphthylene ---1 ---Anthracene ND 0.0200 ug/L 1 Benz(a)anthracene ND 0.0200 ug/L 1 Benzo(a)pyrene ND 0.0300 ug/L ug/L ND 0.0300 Benzo(b)fluoranthene 1 ---Benzo(k)fluoranthene ND 0.0300 ug/L 0.0200 Benzo(g,h,i)perylene ND ug/L 1 ---Chrysene ND 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.0200 ug/L 1 Fluoranthene ND 0.0200 ug/L ND 0.0200 ug/LFluorene 1 ---------0.0200 Indeno(1,2,3-cd)pyrene ND ug/L 1-Methylnaphthalene ND 0.0400 ug/L 1 2-Methylnaphthalene ND 0.0400ug/L 1 Naphthalene ND 0.0400 ug/L 1 ------------------Phenanthrene ND 0.0200ug/L 1 Pyrene ND 0.0200 ug/L 1 ------------Carbazole ND 0.0300 ug/L 1 ------Dibenzofuran ND 0.0200 ug/L 1 2-Chlorophenol ND 0.100 ug/L 1 ug/L 4-Chloro-3-methylphenol ND 0.200 1 2,4-Dichlorophenol ND 0.100 ug/L 2,4-Dimethylphenol ND 0.500 ug/L 1 2,4-Dinitrophenol 0.500 ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.500 ug/L 1 2-Methylphenol ND 0.0500ug/L 1 0.0500 3+4-Methylphenol(s) ND ug/L 1 ------2-Nitrophenol ND 0.200 ug/L 1 0.200 4-Nitrophenol ND ug/L 1 Pentachlorophenol (PCP) ND 0.200 ug/L 1 Phenol ND 0.400 ug/L 1 2,3,4,6-Tetrachlorophenol ND 0.100 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24E0302 - EPA 3510C (Acid/Base Neutral) Water Blank (24E0302-BLK1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 12:40 2,3,5,6-Tetrachlorophenol ND 0.100 ug/L 0.100 2,4,5-Trichlorophenol ND ug/L 1 ---------2,4,6-Trichlorophenol ND 0.100 ug/L 1 Bis(2-ethylhexyl)phthalate ND 0.400 ug/L 1 Butyl benzyl phthalate ND 0.400 ug/L 1 Diethylphthalate ND 0.400 ug/L 1 0.400 Dimethylphthalate ND ug/L 1 ND 0.400 Di-n-butylphthalate ug/L 0.400 Di-n-octyl phthalate ND ug/L 1 N-Nitrosodimethylamine ND 0.0500 ug/L 1 N-Nitroso-di-n-propylamine ND 0.0500 ug/L 1 0.0500 N-Nitrosodiphenylamine ND ug/L 1 ND 0.0500 Bis(2-Chloroethoxy) methane ug/L 1 ------Bis(2-Chloroethyl) ether ND 0.0500ug/L 1 B-02 2,2'-Oxybis(1-Chloropropane) ND 0.0500 ug/L 1 ---Hexachlorobenzene ND 0.0200ug/L Hexachlorobutadiene ND 0.0500 ug/L 1 Hexachlorocyclopentadiene ND 0.100 ug/L 1 0.0500 Hexachloroethane ND ug/L 1 ------2-Chloronaphthalene ND 0.0200ug/L 1,2,4-Trichlorobenzene ND 0.0500 ug/L 1 ---4-Bromophenyl phenyl ether ND 0.0500 ug/L 1 4-Chlorophenyl phenyl ether ND 0.0500 ug/L 1 Aniline ND 0.100 ug/L ND 0.0500 4-Chloroaniline ug/L 1 ------------2-Nitroaniline ND 0.400 ug/L 3-Nitroaniline ND 0.400 ug/L 1 ------4-Nitroaniline ND 0.400 ug/L 1 Nitrobenzene ND 0.200 ug/L 1 ---2,4-Dinitrotoluene ND 0.200 ug/L 1 2,6-Dinitrotoluene ND 0.200 ug/L 1 Benzoic acid ND 2.50 ug/L Benzyl alcohol ND 0.200 ug/L 1 Isophorone ND 0.0500ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		Doto-+	D			C.,.:1-	C		0/ BEC		מממ	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0302 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Blank (24E0302-BLK1)			Prepared	: 05/08/24	11:45 Anal	yzed: 05/09/	/24 12:40					
Azobenzene (1,2-DPH)	ND		0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND		0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND		1.00	ug/L	1							Q-
1,2-Dinitrobenzene	ND		0.500	ug/L	1							
1,3-Dinitrobenzene	ND		0.500	ug/L	1							
1,4-Dinitrobenzene	ND		0.500	ug/L	1							
Pyridine	ND		0.200	ug/L	1							
1,2-Dichlorobenzene	ND		0.0500	ug/L	1							
1,3-Dichlorobenzene	ND		0.0500	ug/L	1							
1,4-Dichlorobenzene	ND		0.0500	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Rece	overy: 80 %	Limits: 44	-120 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			67 %	44	-120 %		"					
Phenol-d6 (Surr)			22 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			95 %	50	-134 %		"					
2-Fluorophenol (Surr)			34 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			58 %	43	-140 %		"					
LCS (24E0302-BS1)			Prepared	: 05/08/24	11:45 Anal	yzed: 05/09/	/24 13:15					
EPA 8270E												
Acenaphthene	2.64		0.0800	ug/L	4	4.00		66	47-122%			
Acenaphthylene	3.07		0.0800	ug/L	4	4.00		77	41-130%			
Anthracene	3.53		0.0800	ug/L	4	4.00		88	57-123%			
Benz(a)anthracene	3.70		0.0800	ug/L	4	4.00		93	58-125%			
Benzo(a)pyrene	3.59		0.120	ug/L	4	4.00		90	54-128%			
Benzo(b)fluoranthene	3.77		0.120	ug/L	4	4.00		94	53-131%			
Benzo(k)fluoranthene	3.62		0.120	ug/L	4	4.00		90	57-129%			
Benzo(g,h,i)perylene	3.72		0.0800	ug/L	4	4.00		93	50-134%			
Chrysene	3.63		0.0800	ug/L	4	4.00		91	59-123%			
Dibenz(a,h)anthracene	3.49		0.0800	ug/L	4	4.00		87	51-134%			
Fluoranthene	3.83		0.0800	ug/L	4	4.00		96	57-128%			
Fluorene	3.34		0.0800	ug/L	4	4.00		84	52-124%			
Indeno(1,2,3-cd)pyrene	3.39		0.0800	ug/L	4	4.00		85	52-134%			
1-Methylnaphthalene	2.24		0.160	ug/L	4	4.00		56	41-120%			
2-Methylnaphthalene	2.14		0.160	ug/L ug/L	•	4.00		20	.1 120/0			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0302 - EPA 3510C (Acid/Base Neutral) Water LCS (24E0302-BS1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 13:15 2.14 0.160 4.00 53 40-121% Naphthalene ug/L 0.0800 Phenanthrene 3.52 ug/L 4 4.00 88 59-120% ------Pyrene 3.77 0.0800ug/L 4 4.00 94 57-126% Carbazole 3.99 0.120 ug/L 4 4.00 100 60-122% 77 Dibenzofuran 3.08 0.0800ug/L 4 4.00 53-120% 4 2-Chlorophenol 2.40 0.400 ug/L 4.00 60 38-120% O-41 0.8004 4-Chloro-3-methylphenol 3.46 --ug/L 4.00 86 52-120% 0.400 4 2,4-Dichlorophenol 3.13 ug/L 4.00 78 47-121% 1.00 4 2,4-Dimethylphenol 1.94 ug/L 4.00 48 31-124% 2,4-Dinitrophenol 4.47 2.00 ug/L 4 4.00 112 23-143% Q-41 4.22 4 Q-41 4,6-Dinitro-2-methylphenol 2.00 4.00 105 44-137% ug/L 0.200 4 2-Methylphenol 2.10 ug/L 4.00 52 30-120% 3+4-Methylphenol(s) 0.200 4 4.00 53 2.10 ug/L 29-120% 2-Nitrophenol 3.31 0.800ug/L 4 4.00 83 47-123% 4 Q-41 4-Nitrophenol 1.43 0.800 4.00 36 10-120% ug/L Pentachlorophenol (PCP) 3.22 0.800ug/L 4 4.00 81 35-138% Phenol 0.874 0.800 4 22 ug/L 4.00 10-120% 2,3,4,6-Tetrachlorophenol 3.45 0.400 4 86 50-128% ug/L 4.00 0.400 4 2,3,5,6-Tetrachlorophenol 4.00 93 3.73 ug/L 50-121% ---2,4,5-Trichlorophenol 4.07 0.400 ug/L 4 4.00 102 53-123% Q-41 2,4,6-Trichlorophenol 3.59 0.400 4 4 00 90 50-125% Q-41 ug/L ---Bis(2-ethylhexyl)phthalate 3.77 1.60 ug/L 4 4.00 94 55-135% Butyl benzyl phthalate 3.76 1.60 ug/L 4 4.00 94 53-134% Diethylphthalate 3.66 1.60 ug/L 4 4.00 92 56-125% 3.69 1.60 4 4.00 92 Dimethylphthalate ug/L 45-127% ---Di-n-butylphthalate 3.94 1.60 ug/L 4 4.00 99 59-127% Di-n-octyl phthalate 3.61 1.60 4 4 00 90 51-140% ug/L ------N-Nitrosodimethylamine 1.46 0.200 ug/L 4 4.00 36 19-120% N-Nitroso-di-n-propylamine 3.25 0.200 ug/L 4 4.00 81 49-120% ---N-Nitrosodiphenylamine 3.38 0.200 ug/L 4 4.00 84 51-123% Bis(2-Chloroethoxy) methane 3.07 0.200 4 4.00 77 48-120% ug/L B-02 Bis(2-Chloroethyl) ether 2.91 0.200 ug/L 4 4.00 73 43-120% 2,2'-Oxybis(1-Chloropropane) 2.65 0.200 ug/L 4 4.00 66 41-120% 0.0800Hexachlorobenzene 3.21 ug/L 4 4.00 80 53-125%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 49 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0302 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
LCS (24E0302-BS1)			Prepared	: 05/08/24	11:45 Anal	yzed: 05/09/	/24 13:15					
Hexachlorobutadiene	1.26		0.200	ug/L	4	4.00		31	22-124%			
Hexachlorocyclopentadiene	0.986		0.400	ug/L	4	4.00		25	10-127%			Q-4
Hexachloroethane	1.34		0.200	ug/L	4	4.00		33	21-120%			
2-Chloronaphthalene	2.39		0.0800	ug/L	4	4.00		60	40-120%			
1,2,4-Trichlorobenzene	1.54		0.200	ug/L	4	4.00		39	29-120%			
4-Bromophenyl phenyl ether	3.09		0.200	ug/L	4	4.00		77	55-124%			
4-Chlorophenyl phenyl ether	2.85		0.200	ug/L	4	4.00		71	53-121%			
Aniline	1.82		0.400	ug/L	4	4.00		46	10-120%			
4-Chloroaniline	2.47		0.200	ug/L	4	4.00		62	33-120%			
2-Nitroaniline	3.69		1.60	ug/L	4	4.00		92	55-127%			
3-Nitroaniline	3.39		1.60	ug/L	4	4.00		85	41-128%			
4-Nitroaniline	3.77		1.60	ug/L	4	4.00		94	25-120%			
Nitrobenzene	2.83		0.800	ug/L	4	4.00		71	45-121%			
2,4-Dinitrotoluene	3.63		0.800	ug/L	4	4.00		91	57-128%			
2,6-Dinitrotoluene	3.46		0.800	ug/L	4	4.00		86	57-124%			
Benzoic acid	3.68		3.20	ug/L	4	8.00		46	10-120%			
Benzyl alcohol	2.25		0.800	ug/L	4	4.00		56	31-120%			
Isophorone	3.33		0.200	ug/L	4	4.00		83	42-124%			
Azobenzene (1,2-DPH)	3.21		0.200	ug/L	4	4.00		80	61-120%			
Bis(2-Ethylhexyl) adipate	3.58		2.00	ug/L	4	4.00		90	63-121%			
3,3'-Dichlorobenzidine	10.6		4.00	ug/L	4	8.00		133	27-129%			Q-29, Q-5
1,2-Dinitrobenzene	3.51		2.00	ug/L	4	4.00		88	59-120%			
1,3-Dinitrobenzene	3.81		2.00	ug/L	4	4.00		95	49-128%			
1,4-Dinitrobenzene	3.75		2.00	ug/L	4	4.00		94	54-120%			
Pyridine	1.65		0.800	ug/L	4	4.00		41	10-120%			
1,2-Dichlorobenzene	1.49		0.200	ug/L	4	4.00		37	32-120%			
1.3-Dichlorobenzene	1.38		0.200	ug/L	4	4.00		35	28-120%			
1,4-Dichlorobenzene	1.44		0.200	ug/L	4	4.00		36	29-120%			
Surr: Nitrobenzene-d5 (Surr)			overy: 76 %	Limits: 44			ıtion: 4x	- *				
2-Fluorobiphenyl (Surr)		nec	71 %		1-120 % 1-120 %	Ditt	1110n. 4x					
Phenol-d6 (Surr)			21 %)-133 %		"					
p-Terphenyl-d14 (Surr)			94 %)-134 %		"					
2-Fluorophenol (Surr)			33 %		0-134 % 0-120 %		,,					
2,4,6-Tribromophenol (Surr)			33 % 87 %		3-140 %							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Santiam 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Water Batch 24E0302 - EPA 3510C (Acid/Base Neutral) LCS Dup (24E0302-BSD1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 13:50 Q-19 EPA 8270E 7 30% Acenaphthene 2.46 0.0800ug/L 4 4.00 62 47-122% Acenaphthylene 2.87 0.0800 ug/L 4 4.00 72 41-130% 7 30% ---30% Anthracene 3.52 0.0800ug/L 4 4.00 88 57-123% 0.1 Benz(a)anthracene 3.59 0.0800 4 4.00 90 58-125% 3 30% ug/L Benzo(a)pyrene 3.56 0.120 ug/L 4 4.00 89 54-128% 1 30% Benzo(b)fluoranthene 3.75 0.120 ug/L 4 4.00 94 53-131% 0.7 30% 0.120Benzo(k)fluoranthene 4 93 3.71 ug/L 4.00 57-129% 2 30% 50-134% Benzo(g,h,i)perylene 3.67 0.0800 ug/L 4 4.00 92 1 30% 4 2 Chrysene 3.56 0.0800ug/L 4.00 89 59-123% 30% Dibenz(a,h)anthracene 3.45 0.08004 4.00 86 51-134% 1 30% ug/L Fluoranthene 3.79 0.0800ug/L 4 4.00 95 57-128% 1 30% Fluorene 3.17 0.0800ug/L 4 4.00 79 52-124% 5 30% 3.42 4 30% Indeno(1,2,3-cd)pyrene 0.0800 4.00 85 52-134% 0.8 ug/L 4 1-Methylnaphthalene 1.97 0.160 ug/L 4.00 49 41-120% 13 30% 2-Methylnaphthalene 0.160 4 47 40-121% 30% 1.87 ug/L 4.00 13 1.91 4 Naphthalene 0.160 ug/L 4.00 48 40-121% 11 30% 0.08004 Phenanthrene 3.47 ug/L 4.00 87 59-120% 1 30% Pyrene 3.72 0.0800ug/L 4 4.00 93 57-126% 1 30% 3.96 4 99 4.00 60-122% 0.8 30% Carbazole 0.120 ug/L 2.89 0.0800 4 Dibenzofuran ug/L 4.00 72 53-120% 7 30% 2-Chlorophenol 2.45 0.400 ug/L 4 4.00 61 38-120% 2 30% 4-Chloro-3-methylphenol 0.8004 52-120% Q-41 3.37 ug/L 4.00 84 3 30% 4 79 0.400 47-121% 30% 2,4-Dichlorophenol 3.17 ug/L 4.00 1 2,4-Dimethylphenol 1.91 1.00 ug/L 4 4.00 48 31-124% 1 30% 2,4-Dinitrophenol 2.00 4 30% Q-41 4.32 4.00 108 23-143% 3 ug/L 4,6-Dinitro-2-methylphenol 4.19 2.00 4 105 44-137% 0.6 30% Q-41 ug/L 4.00 4 2-Methylphenol 2.04 0.200 ug/L 4.00 51 30-120% 3 30% 3+4-Methylphenol(s) 2.01 0.200 4 4.00 50 29-120% 5 30% ug/L 4 30% 2-Nitrophenol 3.26 0.8004.00 81 47-123% 2 ug/L 4-Nitrophenol 1.21 0.800ug/L 4 4.00 30 10-120% 17 30% Q-41 Pentachlorophenol (PCP) 3.25 0.800 ug/L 4 4.00 81 35-138% 0.7 30% Phenol 0.782 0.600 ug/L 4 4.00 20 10-120% 11 30% 3.42 0.400 4 4.00 50-128% 0.7 30%

Apex Laboratories

2,3,4,6-Tetrachlorophenol

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

86

Page 51 of 82 Philip Nerenberg, Lab Director

ug/L

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0302 - EPA 3510C (Acid/Base Neutral) Water LCS Dup (24E0302-BSD1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 13:50 Q-19 2,3,5,6-Tetrachlorophenol 3.70 0.400 4.00 92 0.7 30% ug/L 50-121% 0.400 Q-41 2,4,5-Trichlorophenol 4.04 ug/L 4 4.00 101 53-123% 0.8 30% 0.400 Q-41 2,4,6-Trichlorophenol 3.57 ug/L 4 4.00 89 50-125% 0.5 30% Bis(2-ethylhexyl)phthalate 3.74 1.60 ug/L 4 4.00 93 55-135% 0.8 30% 95 30% Butyl benzyl phthalate 3.80 1.60 ug/L 4 4.00 53-134% 1 4 92 Diethylphthalate 3.68 1.60 ug/L 4.00 56-125% 0.4 30% 4 Dimethylphthalate 3.62 ---1.60 ug/L 4.00 91 45-127% 2 30% 4.00 4 Di-n-butylphthalate 1.60 ug/L 4.00 100 59-127% 1 30% 1.60 4 92 Di-n-octyl phthalate 3.70 ug/L 4.00 51-140% 2 30% N-Nitrosodimethylamine 1.37 0.200 ug/L 4 4.00 34 19-120% 6 30% 4 5 30% N-Nitroso-di-n-propylamine 3.42 0.2004.00 85 49-120% ug/L 0.200 4 N-Nitrosodiphenylamine 3.35 ug/L 4.00 84 51-123% 0.8 30% Bis(2-Chloroethoxy) methane 4 3.12 0.200 4.00 78 48-120% 2 30% --ug/L Bis(2-Chloroethyl) ether 2.93 0.200 ug/L 4 4.00 73 43-120% 0.7 30% B-02 4 2,2'-Oxybis(1-Chloropropane) 2.67 0.200 4.00 67 41-120% 30% ug/L 1 Hexachlorobenzene 3.20 0.0800 ug/L 4 4.00 80 53-125% 0.2 30% Hexachlorobutadiene 0.995 0.200 4 25 30% ug/L 4.00 22-124% 23 Hexachlorocyclopentadiene 0.679 0.400 4 17 10-127% 37 30% Q-41, Q-24 ug/L 4.00 4 Hexachloroethane 1.09 0.200 4.00 2.7 21-120% 20 30% ug/L 2-Chloronaphthalene 2.09 0.0800 ug/L 4 4.00 52 40-120% 13 30% 1,2,4-Trichlorobenzene 1.30 0.200 4 4 00 32 29-120% 17 30% ug/L 4-Bromophenyl phenyl ether 3.01 0.200 ug/L 4 4.00 75 55-124% 3 30% 4-Chlorophenyl phenyl ether 2.67 0.200 ug/L 4 4.00 67 53-121% 7 30% Aniline 1.85 0.400ug/L 4 4.00 46 10-120% 1 30% 4-Chloroaniline 2.42 0.200 4 4.00 61 33-120% 2 30% ug/L 2-Nitroaniline 3.72 1.60 ug/L 4 4.00 93 55-127% 0.8 30% 3-Nitroaniline 3 29 1.60 4 4 00 82 41-128% 3 30% ug/L 4-Nitroaniline 3.66 1.60 ug/L 4 4.00 92 25-120% 3 30% Nitrobenzene 2.90 0.800 ug/L 4 4.00 72 45-121% 2 30% ---2,4-Dinitrotoluene 3.60 0.800ug/L 4 4.00 90 57-128% 0.7 30% 2,6-Dinitrotoluene 3.51 0.800 4 4.00 88 57-124% 2 30% ug/L Benzoic acid 3.57 3.20 ug/L 4 8.00 45 10-120% 3 30% Benzyl alcohol 2.26 0.800 ug/L 4 4.00 56 31-120% 0.2 30% Isophorone 3.38 0.200 ug/L 4 4.00 84 42-124% 2 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 52 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24E0302 - EPA 3510C (Acid/Base Neutral) Water LCS Dup (24E0302-BSD1) Prepared: 05/08/24 11:45 Analyzed: 05/09/24 13:50 Q-19 Azobenzene (1,2-DPH) 3.22 0.200 4.00 80 0.2 30% ug/L 61-120% Bis(2-Ethylhexyl) adipate 3.57 2.00 ug/L 4 4.00 89 63-121% 0.4 30% Q-52 3,3'-Dichlorobenzidine 10.1 4.00 ug/L 4 8.00126 27-129% 5 30% 1,2-Dinitrobenzene 3.50 2.00 ug/L 4 4.00 87 59-120% 0.4 30% 2.00 95 30% 1,3-Dinitrobenzene 3.78 ug/L 4 4.00 49-128% 0.6 3.84 4 96 30% 1,4-Dinitrobenzene 2.00 ug/L 4.00 54-120% 2 0.800Pyridine 1.63 ug/L 4 4.00 41 10-120% 1 30% 1.27 0.200 4 4.00 32 30% 1,2-Dichlorobenzene ug/L 32-120% 16 0.200 4 1,3-Dichlorobenzene 1.16 ug/L 4.00 29 28-120% 18 30% 1,4-Dichlorobenzene 1.20 0.200 ug/L 4 4.00 30 29-120% 18 30% Surr: Nitrobenzene-d5 (Surr) Recovery: 81 % Limits: 44-120 % Dilution: 4x 2-Fluorobiphenyl (Surr) 74 % 44-120 % Phenol-d6 (Surr) 19 % 10-133 % p-Terphenyl-d14 (Surr) 96 % 50-134 % 2-Fluorophenol (Surr) 32 % 19-120 % 90 % 43-140 % 2,4,6-Tribromophenol (Surr)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 53 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0554 - EPA 3015A							Wa	ter				
Blank (24E0554-BLK1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 16:58					
EPA 6020B												
Aluminum	ND		50.0	ug/L	1							
Antimony	ND		1.00	ug/L	1							
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Beryllium	ND		0.200	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Calcium	ND		600	ug/L	1							В-
Chromium	ND		2.00	ug/L	1							
Copper	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Magnesium	ND		150	ug/L	1							В-
Manganese	ND		1.00	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Molybdenum	ND		1.00	ug/L	1							
Nickel	ND		2.00	ug/L	1							
Potassium	ND		100	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Sodium	ND		100	ug/L	1							
Thallium	ND		0.200	ug/L	1							
Vanadium	ND		2.00	ug/L	1							
Zinc	ND		4.00	ug/L	1							
Zinc	ND		4.00	ug/L								
Blank (24E0554-BLK3)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/17	/24 16:13					
EPA 6020B			-									
Boron	ND		10.0	ug/L	1							
Lithium	ND		5.00	ug/L	1							
Strontium	ND		5.00	ug/L	1							В-
LCS (24E0554-BS1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:18					
EPA 6020B						-						
Aluminum	3000		50.0	ug/L	1	2780		108	80-120%			
Antimony	28.9		1.00	ug/L	1	27.8		104	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Santiam

			Total M	letals by	EPA 602	OB (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0554 - EPA 3015A							Wa	ter				
LCS (24E0554-BS1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:18					
Arsenic	56.9		1.00	ug/L	1	55.6		102	80-120%			
Barium	58.4		2.00	ug/L	1	55.6		105	80-120%			
Beryllium	28.4		0.200	ug/L	1	27.8		102	80-120%			
Cadmium	56.8		0.200	ug/L	1	55.6		102	80-120%			
Calcium	3430		600	ug/L	1	2780		124	80-120%			Q-2
Chromium	59.7		2.00	ug/L	1	55.6		107	80-120%			
Copper	63.8		2.00	ug/L	1	55.6		115	80-120%			
Lead	53.0		0.200	ug/L	1	55.6		95	80-120%			
Magnesium	3030		150	ug/L	1	2780		109	80-120%			B-02, Q-4
Manganese	60.2		1.00	ug/L	1	55.6		108	80-120%			
Mercury	1.01		0.0800	ug/L	1	1.11		91	80-120%			
Molybdenum	29.7		1.00	ug/L	1	27.8		107	80-120%			
Nickel	60.0		2.00	ug/L	1	55.6		108	80-120%			
Potassium	2930		100	ug/L	1	2780		106	80-120%			
Selenium	27.7		1.00	ug/L	1	27.8		100	80-120%			
Silver	29.1		0.200	ug/L	1	27.8		105	80-120%			
Sodium	2980		100	ug/L	1	2780		107	80-120%			
Thallium	28.9		0.200	ug/L	1	27.8		104	80-120%			
Vanadium	60.7		2.00	ug/L	1	55.6		109	80-120%			
Zinc	60.1		4.00	ug/L	1	55.6		108	80-120%			
LCS (24E0554-BS2)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/17	/24 17:53					
EPA 6020B												
Boron	234		10.0	ug/L	1	222		105	80-120%			
Lithium	228		5.00	ug/L	1	222		103	80-120%			
Strontium	229		5.00	ug/L	1	222		103	80-120%			B-0
Duplicate (24E0554-DUP1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:31					
OC Source Sample: Non-SDG (A4	ID1691-01)											
Aluminum	ND		500	ug/L	10		ND				20%	R-04, CON
Antimony	ND		10.0	ug/L	10		ND				20%	CONT, R-0
Arsenic	ND		10.0	ug/L	10		ND				20%	CONT, R-0
Barium	ND		20.0	ug/L	10		ND				20%	CONT, R-0
Beryllium	ND		2.00	ug/L	10		ND				20%	CONT, R-0

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 55 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0554 - EPA 3015A							Wa	ter				
Ouplicate (24E0554-DUP1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:31					
QC Source Sample: Non-SDG (A	4D1691-01)											
Cadmium	ND		2.00	ug/L	10		ND				20%	CONT, R-0
Calcium	41600		6000	ug/L	10		40600			3	20%	CONT,B-02 Q-2
Chromium	ND		20.0	ug/L	10		ND				20%	CONT, R-0
Copper	ND		20.0	ug/L	10		ND				20%	CONT, R-0
Lead	ND		2.00	ug/L	10		ND				20%	CONT, R-0
Magnesium	5030		1500	ug/L	10		4790			5	20%	CONT,B-02 Q-4
Manganese	89.6		10.0	ug/L	10		87.3			3	20%	CON
Mercury	ND		0.800	ug/L	10		ND				20%	CONT, R-0
Molybdenum	ND		10.0	ug/L	10		ND				20%	CONT, R-0
Nickel	ND		20.0	ug/L	10		ND				20%	CONT, R-0
Potassium	8300		1000	ug/L	10		7840			6	20%	CON
Selenium	ND		10.0	ug/L	10		ND				20%	CONT, R-0
Silver	ND		2.00	ug/L	10		ND				20%	CONT, R-0
Sodium	17000		1000	ug/L	10		16000			6	20%	CON
Thallium	ND		2.00	ug/L	10		ND				20%	CONT, R-0
Vanadium	ND		20.0	ug/L	10		ND				20%	CONT, R-0
Zinc	ND		40.0	ug/L	10		ND				20%	R-04, CON
Duplicate (24E0554-DUP2)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/17	/24 16:23					
QC Source Sample: Non-SDG (A	4D1691-01)											
Boron	ND		100	ug/L	10		ND				20%	CONT, R-0
Lithium	ND		50.0	ug/L	10		ND				20%	CONT, R-0
Strontium	165		50.0	ug/L	10		161			3	20%	CONT,B-0
Matrix Spike (24E0554-MS1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:44					
QC Source Sample: Non-SDG (A	4D1691-03)											
EPA 6020B												
Aluminum	3060		500	ug/L	10	2780	ND	110	75-125%			CON
Antimony	30.7		10.0	ug/L	10	27.8	ND	111	75-125%			CON
Arsenic	61.2		10.0	ug/L	10	55.6	ND	110	75-125%			CON
Barium	62.1		20.0	ug/L	10	55.6	ND	112	75-125%			CON

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 56 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0554 - EPA 3015A							Wa	ter				
Matrix Spike (24E0554-MS1)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/16	/24 17:44					
QC Source Sample: Non-SDG (A4)	D1691-03)											
Beryllium	30.0		2.00	ug/L	10	27.8	ND	108	75-125%			CON
Cadmium	60.0		2.00	ug/L	10	55.6	ND	108	75-125%			CON
Calcium	41600		6000	ug/L	10	2780	37500	148	75-125%			CONT,B-02 Q-65, Q-2
Chromium	62.5		20.0	ug/L	10	55.6	ND	113	75-125%			CON
Copper	66.5		20.0	ug/L	10	55.6	ND	120	75-125%			CON
Lead	54.8		2.00	ug/L	10	55.6	ND	99	75-125%			CON
Magnesium	9890		1500	ug/L	10	2780	6890	108	75-125%			CONT,B-02 Q-4
Manganese	198		10.0	ug/L	10	55.6	133	116	75-125%			CON
Mercury	1.12		0.800	ug/L	10	1.11	ND	100	75-125%			CON
Molybdenum	32.8		10.0	ug/L	10	27.8	ND	118	75-125%			CON
Nickel	62.8		20.0	ug/L	10	55.6	ND	113	75-125%			CON
Potassium	9830		1000	ug/L	10	2780	6740	112	75-125%			CON
Selenium	29.6		10.0	ug/L	10	27.8	ND	107	75-125%			CON
Silver	30.0		2.00	ug/L	10	27.8	ND	108	75-125%			CON
Sodium	18100		1000	ug/L	10	2780	14900	116	75-125%			CON
Thallium	30.1		2.00	ug/L	10	27.8	ND	108	75-125%			CON
Vanadium	64.7		20.0	ug/L	10	55.6	ND	117	75-125%			CON
Zinc	65.0		40.0	ug/L	10	55.6	ND	117	75-125%			CON
Matrix Spike (24E0554-MS2)			Prepared	: 05/15/24	10:21 Ana	lyzed: 05/17	/24 17:58					
QC Source Sample: Non-SDG (A4)	D1722-01)											
EPA 6020B												
Boron	606		100	ug/L	10	222	366	108	75-125%			
Lithium	236		50.0	ug/L	10	222	ND	106	75-125%			
Strontium	999		50.0	ug/L	10	222	766	105	75-125%			B-0

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: **Santiam**Project Number: **00464.020**Project Manager: **Erik Hedberg**

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0705 - EPA 3015A							Wa	ter				
Blank (24E0705-BLK2)			Prepared	: 05/20/24	14:27 Ana	lyzed: 05/21	1/24 11:31					
EPA 6020B Calcium	ND		600	ug/L	1							Q-16
LCS (24E0705-BS2)			Prepared	: 05/20/24	14:27 Ana	lyzed: 05/21	1/24 13:25					
EPA 6020B Calcium	2970		600	ug/L	1	2780		107	80-120%			Q-16
Duplicate (24E0705-DUP2)			Prepared	: 05/20/24	14:27 Ana	lyzed: 05/21	1/24 13:54					
QC Source Sample: Non-SDG (A4	E1046-01RI	E <u>1)</u>										
Calcium	16200		600	ug/L	1		16100			0.6	20%	Q-16
Matrix Spike (24E0705-MS2)			Prepared	: 05/20/24	14:27 Ana	lyzed: 05/21	1/24 14:33					
QC Source Sample: Non-SDG (A4	E1314-01RI	<u>E1)</u>										
EPA 6020B Calcium	126000		600	ug/L	1	2780	124000	57	75-125%			E, Q-16, Q-65

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 58 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Santiam

		Amm	onia by Gas	Diffusio	on and Co	olorimetri	c Detecti	on				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0140 - Method Prej	p: Aq						Wat	ter				
Blank (24E0140-BLK1)			Prepared	: 05/03/24	09:16 Anal	yzed: 05/03	/24 13:09					
SM 4500-NH3 G Ammonia as N	ND		0.0200	mg/L	1							
LCS (24E0140-BS1)			Prepared	: 05/03/24	09:16 Anal	yzed: 05/03	/24 13:10					
SM 4500-NH3 G Ammonia as N	2.07		0.0200	mg/L	1	2.00		103	90-111%			
Matrix Spike (24E0140-MS1)			Prepared	: 05/03/24	09:16 Anal	yzed: 05/03	/24 13:15					
QC Source Sample: Non-SDG (A SM 4500-NH3 G	A4D1624-01)											
Ammonia as N	2.60		0.0250	mg/L	1	2.50	ND	104	90-111%			
Matrix Spike Dup (24E0140-	MSD1)		Prepared	: 05/03/24	09:16 Ana	yzed: 05/03	/24 13:16					
OC Source Sample: Non-SDG (A	4D1624-01)											
Ammonia as N	2.55		0.0250	mg/L	1	2.50	ND	102	90-111%	2	13%	

Apex Laboratories

Philip Neimberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 59 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		Amm	onia by Gas	Diffusion	on and Co	olorimetri	c Detecti	on				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0183 - Method Prep	: Aq						Wa	ter				
Blank (24E0183-BLK1)			Prepared	: 05/06/24	09:27 Anal	lyzed: 05/06	/24 12:55					
SM 4500-NH3 G Ammonia as N	ND		0.0200	mg/L	1							
LCS (24E0183-BS1)			Prepared	: 05/06/24	09:27 Anal	lyzed: 05/06	/24 12:57					
SM 4500-NH3 G Ammonia as N	1.98		0.0200	mg/L	1	2.00		99	90-111%			
Matrix Spike (24E0183-MS1)			Prepared	: 05/06/24	09:27 Anal	lyzed: 05/06	/24 13:01					
QC Source Sample: Non-SDG (A	4E0800-01)											
SM 4500-NH3 G Ammonia as N	2.88		0.0250	mg/L	1	2.50	0.328	102	90-111%			
Matrix Spike Dup (24E0183-M	(ISD1)		Prepared	: 05/06/24	09:27 Anal	lyzed: 05/06	/24 13:03					
OC Source Sample: Non-SDG (A	4E0800-01)											
Ammonia as N	2.90		0.0250	mg/L	1	2.50	0.328	103	90-111%	0.5	13%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 60 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0116 - Method Prep:	Aq						Wa	iter				
Blank (24E0116-BLK1)			Prepared	: 05/02/24	17:52 Ana	lyzed: 05/02	/24 20:24					
EPA 300.0												
Bromide	ND		1.00	mg/L	1							
Chloride	ND		1.00	mg/L	1							
Fluoride	ND		1.00	mg/L	1							
Nitrate-Nitrogen	ND		0.250	mg/L	1							
Nitrite-Nitrogen	ND		0.250	mg/L	1							
Sulfate	ND		1.00	mg/L	1							
LCS (24E0116-BS1)			Prepared	: 05/02/24	17:52 Ana	lyzed: 05/02	/24 20:46					
EPA 300.0												
Bromide	8.25		1.00	mg/L	1	8.00		103	90-110%			
Chloride	8.21		1.00	mg/L	1	8.00		103	90-110%			
Fluoride	8.09		1.00	mg/L	1	8.00		101	90-110%			
Nitrate-Nitrogen	2.04		0.250	mg/L	1	2.00		102	90-110%			
Nitrite-Nitrogen	2.04		0.250	mg/L	1	2.00		102	90-110%			
Sulfate	8.28		1.00	mg/L	1	8.00		103	90-110%			
Duplicate (24E0116-DUP1)			Prepared	: 05/02/24	17:52 Ana	lyzed: 05/02	/24 23:38					
QC Source Sample: Non-SDG (A4	E0874-01)											
Bromide	ND		1.00	mg/L	1		ND				10%	
Chloride	7.62		1.00	mg/L	1		7.72			1	3%	
Fluoride	ND		1.00	mg/L	1		ND				10%	
Nitrate-Nitrogen	0.908		0.250	mg/L	1		0.912			0.5	3%	
Nitrite-Nitrogen	ND		0.250	mg/L	1		ND				10%	
Sulfate	1.37		1.00	mg/L	1		1.43			4	4%	
Matrix Spike (24E0116-MS1)			Prepared	: 05/02/24	17:52 Ana	lyzed: 05/03	/24 00:43					
QC Source Sample: Non-SDG (A4	E0874-01)											
EPA 300.0												
Bromide	10.3		1.25	mg/L	1	10.0	ND	103	85-115%			
Chloride	18.0		1.25	mg/L	1	10.0	7.72	103	90-113%			
Fluoride	10.3		1.25	mg/L	1	10.0	ND	103	88-120%			
Nitrate-Nitrogen	3.45		0.312	mg/L	1	2.50	0.912	102	87-112%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 61 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
650 NE Holladay St, Ste 900
Portland, OR 97232

Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Anions by Ion Chromatography Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Notes Limit Amount Batch 24E0116 - Method Prep: Aq Water Matrix Spike (24E0116-MS1) Prepared: 05/02/24 17:52 Analyzed: 05/03/24 00:43 QC Source Sample: Non-SDG (A4E0874-01) 2.54 0.312 2.50 101 90-114% Nitrite-Nitrogen mg/L 1 ND 1.25 Sulfate 11.7 10.0 103 88-115% mg/L 1 1.43

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 24E0227 - ASTM D75	11-12 (W)						Wa	ter						
Blank (24E0227-BLK1)			Prepared	: 05/07/24	09:13 Anal	lyzed: 05/07	/24 15:11							
D7511-12 Total Cyanide	ND		0.00500	mg/L	1									
LCS (24E0227-BS1)			Prepared	: 05/07/24	09:13 Anal	lyzed: 05/07	/24 15:13							
D7511-12 Total Cyanide	0.0268		0.00500	mg/L	1	0.0250		107	84-116%					
Matrix Spike (24E0227-MS1	1)		Prepared	: 05/07/24	09:13 Anal	lyzed: 05/07	/24 15:19							
QC Source Sample: Non-SDG ((A4E0858-01)													
Total Cyanide	0.0248		0.00503	mg/L	1	0.0251	ND	99	64-136%					
Matrix Spike Dup (24E0227	-MSD1)		Prepared	: 05/07/24	09:13 Anal	lyzed: 05/07	/24 15:21							
OC Source Sample: Non-SDG	(A4E0858-01)													
Total Cyanide	0.0250		0.00503	mg/L	1	0.0251	ND	99	64-136%	0.9	47%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Santiam

				Demand	Paramet	ers						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0133 - Method Prep:	Aq						Wat	er				
Blank (24E0133-BLK1)			Prepared	: 05/03/24	10:17 Anal	yzed: 05/08	/24 12:45					
SM 5210 B Biochemical Oxygen Demand	ND		0.200	mg/L	1							
Duplicate (24E0133-DUP1)			Prepared	: 05/03/24	10:17 Anal	yzed: 05/08	/24 12:45					
QC Source Sample: Non-SDG (A4)	E0855-01)											
Biochemical Oxygen Demand	6.67		2.67	mg/L	1		7.23			8	20%	
Duplicate (24E0133-DUP2)			Prepared	: 05/03/24	14:57 Anal	yzed: 05/08	/24 12:45					
QC Source Sample: Non-SDG (A4)	E0906-01)											
Biochemical Oxygen Demand	10.1		2.67	mg/L	1		9.84			3	20%	
Reference (24E0133-SRM1)			Prepared	: 05/03/24	10:17 Anal	yzed: 05/08	/24 12:45					
SM 5210 B Biochemical Oxygen Demand	214			mg/L	1	198		108	85-115%			

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 64 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

		Orth	ophosphate	by Colo	orimetric	Spectropl	notomet	ry				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0113 - Method Prep:	: A q						Wa	ter				
Blank (24E0113-BLK1)			Prepared	: 05/02/24	17:09 Ana	lyzed: 05/02	/24 18:55					
SM 4500-P E Orthophosphate Phosphorus	ND		0.0200	mg/L	1							
LCS (24E0113-BS1)			Prepared	: 05/02/24	17:09 Ana	lyzed: 05/02	/24 18:55					
SM 4500-P E Orthophosphate Phosphorus	0.265		0.0200	mg/L	1	0.261		102	90-110%			
Matrix Spike (24E0113-MS1)			Prepared	: 05/02/24	17:09 Ana	lyzed: 05/02	/24 19:04					
QC Source Sample: Non-SDG (A4	E0866-07)											
SM 4500-P E Orthophosphate Phosphorus	0.277		0.0202	mg/L	1	0.261	0.0103	102	90-110%			
Matrix Spike Dup (24E0113-M	(SD1)		Prepared	: 05/02/24	17:09 Ana	lyzed: 05/02	/24 19:04					
OC Source Sample: Non-SDG (A4	E0866-07)											
Orthophosphate Phosphorus	0.278		0.0202	mg/L	1	0.261	0.0103	103	90-110%	0.2	4%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 65 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0206 - Total Suspen	ded Solid	s - 2022					Wat	ter				
Blank (24E0206-BLK1)			Prepared	: 05/06/24	14:15 Ana	lyzed: 05/06	/24 14:15					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (24E0206-DUP1)			Prepared	: 05/06/24	14:15 Ana	lyzed: 05/06	/24 14:15					
QC Source Sample: SW-1-050124 SM 2540 D	(A4E0861-0	02)										
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	
Duplicate (24E0206-DUP2)			Prepared	: 05/06/24	14:15 Ana	lyzed: 05/06	/24 14:15					
QC Source Sample: Non-SDG (A4	E0906-01)											
Total Suspended Solids	8.00		5.00	mg/L	1		10.0			22.2	10%	Q-0
Reference (24E0206-SRM1)			Prepared	: 05/06/24	14:15 Ana	lyzed: 05/06	/24 14:15					
SM 2540 D Total Suspended Solids	1010			mg/L	1	875		115	85-115.4%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 66 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Portland, OR 97232

Project Number: 00464.020 Project Manager: Erik Hedberg A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Santiam

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0214 - Total Dissolv	ed Solids	- 2022					Wat	er				
Blank (24E0214-BLK1)			Prepared	: 05/06/24	19:18 Ana	lyzed: 05/06	/24 19:18					
SM 2540 C Total Dissolved Solids	ND		5.00	mg/L	1							
Duplicate (24E0214-DUP1)			Prepared	: 05/06/24	19:18 Ana	lyzed: 05/06	6/24 19:18					
QC Source Sample: Non-SDG (A4	ID1728-06)											
Total Dissolved Solids	11900		500	mg/L	1		12100			1.67	10%	
Duplicate (24E0214-DUP2)			Prepared	: 05/06/24	19:18 Ana	lyzed: 05/06	/24 19:18					
QC Source Sample: WW-050124	(A4E0861-0	<u>1)</u>										
SM 2540 C												
Total Dissolved Solids	316		5.00	mg/L	1		307			2.89	10%	
Reference (24E0214-SRM1)			Prepared	: 05/06/24	19:18 Ana	lyzed: 05/06	5/24 19:18					
SM 2540 C												
Total Dissolved Solids	2550			mg/L	1	2470		103	82-118%			

Apex Laboratories

Philip Neimberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 67 of 82 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REO	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0066 - Method Prep	: Aq						Wa	ter				
Duplicate (24E0066-DUP1)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 12:00					
QC Source Sample: Non-SDG (A	4E0811-01)											
pH	8.1			pH Units	1		8.1			0.5	2%	H-1
pH Temperature (deg C)	25.1			pH Units	1		25.7			2	30%	H-12
Duplicate (24E0066-DUP2)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 17:10					
QC Source Sample: Non-SDG (A	4E0866-12)											
pH	7.4			pH Units	1		7.3			0.4	2%	H-12
pH Temperature (deg C)	18.8			pH Units	1		18.8			0	30%	H-12
Reference (24E0066-SRM1)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 09:54					
SM 4500-H+ B												
pH	6.0			pH Units	1	6.00		101	98.33-101.33	3%		
pH Temperature (deg C)	21.3			pH Units	1	20.0		106	50-200%			
Reference (24E0066-SRM2)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 09:55					
SM 4500-H+ B												
pH	8.0			pH Units	1	8.00		100	99-101%			
pH Temperature (deg C)	21.3			pH Units	1	20.0		106	50-200%			
Reference (24E0066-SRM3)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 11:55					
SM 4500-H+B												
pН	6.0			pH Units		6.00			98.33-101.33	3%		
pH Temperature (deg C)	21.8			pH Units	s 1	20.0		109	50-200%			
Reference (24E0066-SRM4)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 12:24					
SM 4500-H+ B												
pH	8.0			pH Units	1	8.00		100	99-101%			
pH Temperature (deg C)	22.1			pH Units	1	20.0		110	50-200%			
Reference (24E0066-SRM5)			Prepared	: 05/02/24 0	9:42 Ana	lyzed: 05/02	/24 16:41					
SM 4500-H+ B												
pН	6.0			pH Units	1	6.00		100	98.33-101.33	3%		
pH Temperature (deg C)	22.0			pH Units	1	20.0		110	50-200%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Cl	nemistry	Conventional Chemistry Parameters											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes					
Batch 24E0066 - Method Prep	: Aq						Wate	er									
Reference (24E0066-SRM6)			Prepared	: 05/02/24	09:42 Anal	yzed: 05/02	/24 17:13										
SM 4500-H+B	8.0			mII I Imid	.a 1	8.00		99	99-101%								
pH pH Temperature (deg C)	22.0			pH Unit pH Unit		20.0		110	50-200%								

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Santiam

Conventional Chemistry Parameters												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0090 - Method Prep	: Aq						Wat	ter				
Blank (24E0090-BLK1)			Prepared	: 05/02/24	12:16 Anal	yzed: 05/02	/24 18:10					
SM 2510 B Conductivity	ND		2.50	umhos/c @25deg								
Duplicate (24E0090-DUP1)			Prepared	: 05/02/24	12:16 Anal	yzed: 05/02	/24 18:19					
QC Source Sample: Non-SDG (A4	4E0804-01)											
Conductivity	507		2.50	umhos/c @25deg			506			0.1	3%	
Reference (24E0090-SRM1)			Prepared	: 05/02/24	12:16 Ana	lyzed: 05/02	/24 18:11					
SM 2510 B												
Conductivity	1440			umhos/c @25deg		1410		102	95-105%			

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 70 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project Number: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALITY CONTROL (QC) SAMPLE RESULTS

Conventional Chemistry Parameters												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0292 - Method Prep	: Aq						Wa	ter				
Blank (24E0292-BLK1)			Prepared	: 05/08/24 0	9:08 Ana	yzed: 05/08	/24 10:48					
SM 2320 B												
Total Alkalinity	ND		20.0	mg CaCO3/I	1							
Bicarbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1							
LCS (24E0292-BS1)			Prepared	: 05/08/24 0	9:08 Ana	yzed: 05/08	/24 10:55					
SM 2320 B												
Total Alkalinity	105		20.0	mg CaCO3/I	1	100		105	90-115%			
Duplicate (24E0292-DUP1)			Prepared	: 05/08/24 0	9:08 Ana	yzed: 05/08	/24 12:25					
QC Source Sample: Non-SDG (A4	4E0807-01)											
Total Alkalinity	126		20.0	mg CaCO3/I	1		126			0.2	5%	
Bicarbonate Alkalinity	126		20.0	mg CaCO3/I	1		126			0.2	5%	
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

SAMPLE PREPARATION INFORMATION

Santiam

		Volatile (Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0435			1	1			
A4E0861-01RE1	Water	EPA 8260D	05/01/24 09:10	05/13/24 10:13	5mL/5mL	5mL/5mL	1.00
		Semivolatil	e Organic Compour	ids by EPA 8270E			
Prep: EPA 3510C (Aci	d/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0302			•	•			-
A4E0861-01RE1	Water	EPA 8270E	05/01/24 09:10	05/08/24 11:45	960mL/1mL	1000mL/1mL	1.04
		Total	Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0554			*	*			
A4E0861-01	Water	EPA 6020B	05/01/24 09:10	05/15/24 10:21	45mL/50mL	45mL/50mL	1.00
A4E0861-01RE1	Water	EPA 6020B	05/01/24 09:10	05/15/24 10:21	45mL/50mL	45mL/50mL	1.00
Batch: 24E0705							
A4E0861-01RE3	Water	EPA 6020B	05/01/24 09:10	05/20/24 14:27	45mL/50mL	45mL/50mL	1.00
		Ammonia by	Gas Diffusion and C	olorimetric Detection	า		
Prep: Method Prep: Ad	1				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0183							
A4E0861-01RE1	Water	SM 4500-NH3 G	05/01/24 09:10	05/06/24 09:27	10mL/10mL	10mL/10mL	1.00
		Ar	nions by Ion Chroma	tography			
Prep: Method Prep: Ad	1				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0116			*	*			-
	Water	EPA 300.0	05/01/24 09:10	05/02/24 17:52	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 72 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

SAMPLE PREPARATION INFORMATION

		Total Cyanide by UV	Bigootion, Cae Binas	sion/Amperometric i	3010011011		
Prep: ASTM D7511-12	<u>2 (W)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0227							
A4E0861-01	Water	D7511-12	05/01/24 09:10	05/07/24 09:13	10mL/10mL	10mL/10mL	1.00
			Demand Parame	eters			
Prep: Method Prep: A	1				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0133			-	-			
A4E0861-02	Water	SM 5210 B	05/01/24 14:50	05/03/24 10:17	150mL/300mL	150mL/300mL	NA
A4E0861-03	Water	SM 5210 B	05/01/24 15:40	05/03/24 10:17	150mL/300mL	150mL/300mL	NA
		Orthophosp	hate by Colorimetric	Spectrophotometry			
Prep: Method Prep: A	1				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0113							
	XX7 4	SM 4500-P E	05/01/24 00:10	05/02/24 17:00	25 1/25 1	25 1/25 1	1.00
A4E0861-01	Water	5W 4500-1 E	05/01/24 09:10	05/02/24 17:09	25mL/25mL	25mL/25mL	1.00
A4E0861-01	water		id and Moisture Dete		25mL/25mL	25mL/25mL	1.00
A4E0861-01 Prep: Total Dissolved					Sample	Default	
Prep: Total Dissolved							
Prep: Total Dissolved	Solids - 2022	Sol	id and Moisture Dete	erminations	Sample	Default	RL Prep
Prep: Total Dissolved Lab Number Batch: 24E0214	Solids - 2022	Sol	id and Moisture Dete	erminations	Sample	Default	RL Prep
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01	Solids - 2022 Matrix	Sol	id and Moisture Dete	erminations Prepared	Sample	Default	RL Prep Factor
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02	Solids - 2022 Matrix Water	Method SM 2540 C	id and Moisture Dete Sampled 05/01/24 09:10	Prepared 05/06/24 19:18	Sample	Default	RL Prep Factor
Prep: Total Dissolved Lab Number	Solids - 2022 Matrix Water Water Water	Method SM 2540 C SM 2540 C	id and Moisture Dete Sampled 05/01/24 09:10 05/01/24 14:50	Prepared 05/06/24 19:18 05/06/24 19:18	Sample	Default	RL Prep Factor NA NA NA
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03 Prep: Total Suspender	Solids - 2022 Matrix Water Water Water	Method SM 2540 C SM 2540 C	id and Moisture Dete Sampled 05/01/24 09:10 05/01/24 14:50	Prepared 05/06/24 19:18 05/06/24 19:18	Sample Initial/Final	Default Initial/Final	RL Prep Factor NA NA NA
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03	Solids - 2022 Matrix Water Water Water Water Use Solids - 2022	Method SM 2540 C SM 2540 C SM 2540 C	Sampled 05/01/24 09:10 05/01/24 14:50 05/01/24 15:40	Prepared 05/06/24 19:18 05/06/24 19:18 05/06/24 19:18	Sample Initial/Final	Default Initial/Final Default	RL Prep Factor NA NA NA RL Prep
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03 Prep: Total Suspender Lab Number Batch: 24E0206	Solids - 2022 Matrix Water Water Water Water Use Solids - 2022	Method SM 2540 C SM 2540 C SM 2540 C	Sampled 05/01/24 09:10 05/01/24 14:50 05/01/24 15:40	Prepared 05/06/24 19:18 05/06/24 19:18 05/06/24 19:18	Sample Initial/Final	Default Initial/Final Default	RL Prep Factor NA NA NA RL Prep
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03 Prep: Total Suspender	Solids - 2022 Matrix Water Water Water Under Water Water Matrix	Method SM 2540 C SM 2540 C SM 2540 C SM 2540 C	id and Moisture Dete Sampled 05/01/24 09:10 05/01/24 14:50 05/01/24 15:40 Sampled	Prepared 05/06/24 19:18 05/06/24 19:18 05/06/24 19:18 Prepared	Sample Initial/Final	Default Initial/Final Default	RL Prep Factor NA NA NA RL Prep Factor
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03 Prep: Total Suspended Lab Number Batch: 24E0206 A4E0861-02	Solids - 2022 Matrix Water Water Water Usolids - 2022 Matrix Water	Method SM 2540 C SM 2540 C SM 2540 C Method SM 2540 D SM 2540 D	Sampled 05/01/24 09:10 05/01/24 14:50 05/01/24 15:40 Sampled 05/01/24 14:50	Prepared 05/06/24 19:18 05/06/24 19:18 05/06/24 19:18 Prepared 05/06/24 14:15 05/06/24 14:15	Sample Initial/Final	Default Initial/Final Default	RL Prep Factor NA NA NA RL Prep Factor
Prep: Total Dissolved Lab Number Batch: 24E0214 A4E0861-01 A4E0861-02 A4E0861-03 Prep: Total Suspended Lab Number Batch: 24E0206 A4E0861-02	Solids - 2022 Matrix Water Water Water d Solids - 2022 Matrix Water Water	Method SM 2540 C SM 2540 C SM 2540 C Method SM 2540 D SM 2540 D	Sampled 05/01/24 09:10 05/01/24 14:50 05/01/24 15:40 Sampled 05/01/24 15:40	Prepared 05/06/24 19:18 05/06/24 19:18 05/06/24 19:18 Prepared 05/06/24 14:15 05/06/24 14:15	Sample Initial/Final	Default Initial/Final Default	RL Prep Factor NA NA NA RL Prep Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: 650 NE Holladay St, Ste 900 Project Number: 00464.020 Portland, OR 97232 Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

SAMPLE PREPARATION INFORMATION

Santiam

		Con	ventional Chemistry	Parameters			
Prep: Method Prep: A	<u>q</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0066							
A4E0861-01	Water	SM 4500-H+ B	05/01/24 09:10	05/02/24 11:42	20mL/20mL	20mL/20mL	NA
A4E0861-02	Water	SM 4500-H+ B	05/01/24 14:50	05/02/24 11:42	20mL/20mL	20mL/20mL	NA
A4E0861-03	Water	SM 4500-H+ B	05/01/24 15:40	05/02/24 11:42	20mL/20mL	20mL/20mL	NA
Batch: 24E0090							
A4E0861-01	Water	SM 2510 B	05/01/24 09:10	05/02/24 12:16	40mL/40mL	40mL/40mL	NA
Batch: 24E0292							
A4E0861-01	Water	SM 2320 B	05/01/24 09:10	05/08/24 09:08	60mL/60mL	60mL/60mL	NA

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 74 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ex Laborate	<u>ories</u>
В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
CONT	The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
DCNT	Sample decanted due to the presence of sediment. Sample bottle not rinsed with solvent.
E	Estimated Value. The result is above the calibration range of the instrument.
H-12	Sample Analysis or Filtration was performed >15 minutes after sample collection. Consult regulator or permit manager to determine the usability of data for intended use.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-11	Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-24	The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -3%. The results are reported as Estimated Values.
0.54	

Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -4%. The

Apex Laboratories

Q-54a

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

results are reported as Estimated Values.

Page 75 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Report ID:Portland, OR 97232Project Manager:Erik HedbergA4E0861 - 05 23 24 1220

Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure
	detection at the reporting level.

Q-65 Spike recovery is estimated due to the high analyte concentration of the source sample.

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

S-06 Surrogate recovery is outside of established control limits.

TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 76 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 650 NE Holladay St, Ste 900
 Project Number:
 00464.020
 Report ID:

 Portland, OR 97232
 Project Manager:
 Erik Hedberg
 A4E0861 - 05 23 24 1220

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 77 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam650 NE Holladay St, Ste 900Project Number:00464.020Portland, OR 97232Project Manager:Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 78 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
Project: Santiam

650 NE Holladay St, Ste 900
Portland, OR 97232
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 79 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project: Santiam
Project Number: 00464.020

Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

Lab# H445 0 26 1 of 1	Project # 004/c4-020	Email: Inall@gsiws.co.m							HMENT FOR -SW SHIPPED TSS, TDS, BOD, PH	JESSE HATL @ 10:48 am 05/0.		Date: Time:	
Lab# HAXOX	SANTIAM CAMON Proj	Email: 1991	ANALYSIS REQUEST	1300-COT2 1300-COT2 1301-T DISS LCTb LOLYF DISS LCTb VE Vet	ч				SEE ATTACHMENT ANACYSIS TSS,"		RECEIVED BY:	Date: Signature: Time: Printed Name:	Company:
4	Project Name: JNF1LT	Phone: 541-981-0172 Fax:	ANALY	ACRY Metals (8) BCRY Metals (8) 8083 PCRs 8270 SIM PAHs 8270 SAOC	FOR ANALYSI			SPECIAL INSTRUCTIONS:		FMAIL FROM FOR WW-050124	RELINQUISHED BY:	gnaure: Printed Name:	ny.
718-0333	HEDBERD			8760 BLEX 8760 BBDW AOC? 8760 AOC MALLH-C? MALLH-D.	dH1H4 315			SPEC		Other: NOKMAL	RELI	Date: SZ Daman	Company
8-2323 Fax: 503-718-	2 K	POPTLAND, O	20,620	WATRIX # OF CONTAINERS	0	50sw 2	+	YES NO	3 Day		RECEIVED AV:	ure:	my. They
OR 97223 Ph: 503-71	WATER SOWTIONS Project Mgr.	AY STREET	IN SKYKIN F	# OF B TO # TIME	WW 01: P20/20	WS02-H1-50/50	05/02 15:46SW	Susiness Days	1 Day 2 Day	4 DAY 5 DAY	RECE	Date: 05/02 Signature:	WIDMS Company
12232 S.W. Garden Place, Tigard, OR 97223 Ptr. 503-718-2323 Fax: 503-718-0333	Company: OSI WATER	Address: 650 NE HOWARAY STREET, POPILITIO, OR	Sampled by: HO WY NOTLOM 2 RYAN FORD	Site Location: OR WA Other:	WW - 050124	SW-1-050124	KW-Z-050124	Normal Turn Around Time (TAT) = 7-10 Business Days	TAT Remested (ritrole)	(ASSE) POSSE	RELINQUISHED BY:	Signature: WOLKLY WINGTH Date: Printed Name: 470 114 NOVCON Fine	Company: (5S) WATTRE SDW710MS

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 80 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900

Portland, OR 97232

Project: Santiam Project Number: 00464.020

Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

A4 E0861

Anissa Kepa

From: Sent:

Philip Nerenberg Thursday, May 2, 2024 3:09 PM

Subject:

Anissa Kepa FW: Santiam Wastewater COC

From: Jesse Hall [mailto:jhall@gsiws.com] Sent: Thursday, May 2, 2024 10:48 AM

To: Philip Nerenberg Cc: Holly Norcom

Subject: Santiam Wastewater COC

CAUTION! THIS IS AN EXTERNAL EMAIL:

This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning, Philip. Yesterday we collected a wastewater sample for analysis of:

- General Parameters by Methods SM4500-H/SM2510B/SM2540C/SM2320B including pH, specific conductivity, total dissolved solids (TDS), and alkalinity (total, bicarbonate, carbonate, hydroxide).
- Total metals and major cations by EPA Methods 6020B/SM4500PE including aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, copper, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, phosphorus (as phosphate), potassium, selenium, silver, sodium, strontium, thallium, vanadium, and zinc.
- Anions including bromide, chloride, fluoride, and sulfate by EPA Method 300.0/9056A.
- Nitrogen species by EPA Method 300.0/9056A including nitrate, nitrite, and ammonia
- Cyanide by American Society for Testing Materials (ASTM) Method D7511.
- Volatile Organic Compounds (VOCs) by EPA Method 8260D.
- Semi-volatile Organic Compounds (SVOCs) by EPA Method 8270E.

We are planning on sending this over to you today via courier, but we do not have a COC for this bottle set. Can you please forward me one and we will get it sent over asap?

Thanks,

Jesse Hall, GIT

Project Hydrogeologist mobile: 541.981.0172 650 NE Holladay Street, Suite 900, Portland, OR 97232 GSI Water Solutions, Inc. | www.gsiws.com

1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 81 of 82

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 650 NE Holladay St, Ste 900 Portland, OR 97232 Project: Santiam
Project Number: 00464.020
Project Manager: Erik Hedberg

Report ID: A4E0861 - 05 23 24 1220

APEX LABS COOLER RECEIPT FORM	
Client: GSI Water Solutions Element WO#: A4 E0861	
Project/Project #: Santiam Canyon Infiltration 00464.020	
Delivery Info:	
Date/time received: 51 MM @ 1778 By: F&	
Delivered by: Apex Client YESS FedEx UPS Radio Morgan SDS Evergreen Other	
From USDA Regulated Origin? Yes No>	
Cooler Inspection Date/time inspected: 5) MM @ 1799 By: J&	
Chain of Custody included? Yes No	
Signed/dated by client? Yes _ \swarrow _ No	
Contains USDA Reg. Soils? Yes NoY Unsure (email RegSoils)	
Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: IMM @ 1400 By: If All samples intact? Yes * No Comments: Bottle labels/COCs agree? Yes No ** Comments: Dates on CoC reads of 102 & Dates on Control Had II + times 1:5ted for SW-1 & 2 are taken COC/container discrepancies form initiated? Yes No ** After received in-lab. Containers/volumes received appropriate for analysis? Yes ** No Comments:	210.
Do VOA vials have visible headspace? Yes No NA Comments	7
Transcribed for 78-1AAW - AKK 571/1M Labeled by: Cooler Inspected by: AAW The state of the st	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Maenberg

Analytical Results Report For:

GSI Water Solutions, Inc.

Project Number:

Santiam Canyon Infiltration Investigation

Anatek Work Order:

MEE0128

Anatek Moscow - 1282 Alturas Drive - Moscow, ID 83843 - 208-883-2839 - moscow@anateklabs.com - FL NELAP E87893
Anatek Spokane - 504 E Sprague Ste. D - Spokane, WA 99202 - 509-838-3999 - spokane@anateklabs.com - FL NELAP E871099
Anatek Yakima - 4802 Tieton Drive - Yakima, WA 98908 - 509-225-9404 - yakima@anateklabs.com - FL NELAP E871190
Anatek Wenatchee - 3019 Gs Center Rd - Wenatchee, WA 98801 - 509-701-8362

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: GSI Water Solutions, Inc.

Address: 650 NE Holladay Street, Suite 900

Portland, OR 97232

Attn: Erik Hedberg

Work Order: MEE0128

Project: Santiam Canyon Infiltration Investigation

Reported: 5/20/2024 12:52

Analytical Results Report

Sample Location: MW-1-050124

Lab/Sample Number: MEE0128-01 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Matrix: Groundwater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11CI-PF3OUdS	ND	ug/L	0.00392	0.0100	5/8/24 23:19	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	5/8/24 23:19	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	5/8/24 23:19	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	5/8/24 23:19	MER	EPA 1633	U
5:2FTS	ND	ug/L	0.00306	0.0200	5/8/24 23:19	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	5/8/24 23:19	MER	EPA 1633	U
3:2FTS	ND	ug/L	0.00428	0.0200	5/8/24 23:19	MER	EPA 1633	U
CI-PF3ONS	ND	ug/L	0.00514	0.0100	5/8/24 23:19	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	5/8/24 23:19	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	5/8/24 23:19	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	5/8/24 23:19	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	5/8/24 23:19	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	5/8/24 23:19	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	5/8/24 23:19	MER	EPA 1633	U
IMeFOSA	ND	ug/L	0.00124	0.0100	5/8/24 23:19	MER	EPA 1633	U
I-MeFOSAA	ND	ug/L	0.00100	0.0100	5/8/24 23:19	MER	EPA 1633	U
IMeFOSE	ND	ug/L	0.00186	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFBA	ND	ug/L	0.0147	0.0200	5/8/24 23:19	MER	EPA 1633	U
FBS	0.00414	ug/L	0.000660	0.0100	5/8/24 23:19	MER	EPA 1633	J
PFDA	ND	ug/L	0.00238	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	5/8/24 23:19	MER	EPA 1633	U
PFHpA	0.00151	ug/L	0.00120	0.0100	5/8/24 23:19	MER	EPA 1633	J
PFHpS	ND	ug/L	0.000920	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFHxA	0.00590	ug/L	0.000840	0.0100	5/8/24 23:19	MER	EPA 1633	J
PFHxS	ND	ug/L	0.00104	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	5/8/24 23:19	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	5/8/24 23:19	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFOA	0.00792	ug/L	0.00162	0.0100	5/8/24 23:19	MER	EPA 1633	J
PFOS	0.0131	ug/L	0.00126	0.0100	5/8/24 23:19	MER	EPA 1633	
PFOSA	0.000926	ug/L	0.000900	0.0100	5/8/24 23:19	MER	EPA 1633	J

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

MW-1-050124 Sample Location:

Lab/Sample Number: MEE0128-01 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Matrix: Groundwater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
PFPeA	0.00524	ug/L	0.00204	0.0100	5/8/24 23:19	MER	EPA 1633	J
PFPeS	ND	ug/L	0.00108	0.0100	5/8/24 23:19	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00310	0.0200	5/8/24 23:19	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00358	0.0200	5/8/24 23:19	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00198	0.0100	5/8/24 23:19 	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	80.2%		25-200	· 	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	83.5%		24-200	•	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	83.3%		5-200		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-PFDA NIS	93.6%		50-150	,	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	66.2%		<i>5-171</i>		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	92.4%		50-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	63.8%		5-140		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	73.5%		25-160		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	90.2%		50-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	65.7%		39-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	70.5%		52-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	76.1%		<i>5-174</i>		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	82.0%		55-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	90.8%		50-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	87.3%		50-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	80.4%		41-150)	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	88.0%		50-150)	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	75.2%		20-162	,	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	88.0%		37-140	1	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	84.0%		10-190	1	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	83.6%		42-150)	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	74.3%		32-144	!	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	76.0%		30-142	,	5/8/24 23:19	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	84.0%		47-142	,	5/8/24 23:19	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	88.6%		50-150)	5/8/24 23:19	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	59.6%		<i>5-167</i>		5/8/24 23:19	MER	EPA 1633	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Sample Location: MW-1-050124

Lab/Sample Number: MEE0128-01 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Matrix: Groundwater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: D3-NMeFOSAA EIS	68.6%		45-200		5/8/24 23:19	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	71.2%		5-170		5/8/24 23:19	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	63.2%		10-200		5/8/24 23:19	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	62.0%		5-150		5/8/24 23:19	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	68.0%		<i>5-150</i>		5/8/24 23:19	MER	EPA 1633	

MW-2-050124 Sample Location:

Lab/Sample Number: MEE0128-02 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11Cl-PF3OUdS	ND	ug/L	0.00392	0.0100	5/9/24 0:10	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	5/9/24 0:10	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	5/9/24 0:10	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	5/9/24 0:10	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00306	0.0200	5/9/24 0:10	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	5/9/24 0:10	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00428	0.0200	5/9/24 0:10	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00514	0.0100	5/9/24 0:10	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	5/9/24 0:10	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	5/9/24 0:10	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	5/9/24 0:10	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	5/9/24 0:10	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	5/9/24 0:10	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	5/9/24 0:10	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00124	0.0100	5/9/24 0:10	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00100	0.0100	5/9/24 0:10	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00186	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFBA	ND	ug/L	0.0147	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFBS	0.00300	ug/L	0.000660	0.0100	5/9/24 0:10	MER	EPA 1633	J
PFDA	ND	ug/L	0.00238	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000920	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFHxA	0.00212	ug/L	0.000840	0.0100	5/9/24 0:10	MER	EPA 1633	J
PFHxS	ND	ug/L	0.00104	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFOA	0.00290	ug/L	0.00162	0.0100	5/9/24 0:10	MER	EPA 1633	j
PFOS	0.00416	ug/L	0.00126	0.0100	5/9/24 0:10	MER	EPA 1633	J
PFOSA	ND	ug/L	0.000900	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFPeA	ND	ug/L	0.00204	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00108	0.0100	5/9/24 0:10	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00310	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00310	0.0200	5/9/24 0:10	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00198	0.0100	5/9/24 0:10	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	94.5%		25-200		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	97.2%		24-200)	5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	97.7%		<i>5-200</i>		5/9/24 0:10	MER	EPA 1633	

Sample Location: MW-2-050124

MEE0128-02 Lab/Sample Number: Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	86.4%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	87.2%		<i>5-171</i>		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	83.6%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	79.8%		5-140		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	85.3%		25-160		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	86.4%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	98.3%		39-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	92.0%		52-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	94.9%		<i>5-174</i>		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	93.6%		55-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	90.4%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	81.4%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	94.8%		41-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	79.1%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	92.8%		20-162		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	92.8%		37-140		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	83.2%		10-190		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	87.6%		42-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	95.2%		32-144		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	84.0%		30-142		5/9/24 0:10	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	101%		47-142		5/9/24 0:10	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	83.5%		50-150		5/9/24 0:10	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	58.0%		<i>5-167</i>		5/9/24 0:10	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	95.6%		45-200		5/9/24 0:10	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	74.8%		5-170		5/9/24 0:10	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	92.0%		10-200		5/9/24 0:10	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	81.6%		<i>5-150</i>		5/9/24 0:10	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	74.4%		<i>5-150</i>		5/9/24 0:10	MER	EPA 1633	

Sample Location: MW-3d-050124

Lab/Sample Number: MEE0128-03 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11Cl-PF3OUdS	ND	ug/L	0.00392	0.0100	5/9/24 0:37	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	5/9/24 0:37	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	5/9/24 0:37	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	5/9/24 0:37	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00306	0.0200	5/9/24 0:37	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	5/9/24 0:37	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00428	0.0200	5/9/24 0:37	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00514	0.0100	5/9/24 0:37	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	5/9/24 0:37	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	5/9/24 0:37	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	5/9/24 0:37	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	5/9/24 0:37	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	5/9/24 0:37	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	5/9/24 0:37	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00124	0.0100	5/9/24 0:37	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00100	0.0100	5/9/24 0:37	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00186	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFBA	ND	ug/L	0.0147	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFBS	ND	ug/L	0.000660	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFDA	ND	ug/L	0.00238	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000920	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000840	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFHxS	ND	ug/L	0.00104	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFNS	ND	ug/L	0.00122	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFOA	ND	ug/L	0.00162	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFOS	0.00142	ug/L	0.00102	0.0100	5/9/24 0:37	MER	EPA 1633	j
PFOSA	ND	ug/L	0.000900	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFPeA	ND	ug/L	0.00204	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00204	0.0100	5/9/24 0:37	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00100	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFTrDA	ND	ug/L ug/L	0.00310	0.0200	5/9/24 0:37	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00338	0.0200	5/9/24 0:37	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	91.3%		25-200)	5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	88.3%		24-200)	5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	88.1%		<i>5-200</i>		5/9/24 0:37	MER	EPA 1633	

Sample Location: MW-3d-050124

Lab/Sample Number: MEE0128-03 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	88.0%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	80.0%		<i>5-171</i>		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	94.0%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	69.4%		5-140		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	76.3%		25-160		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	89.6%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	82.0%		39-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	80.2%		52-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	85.5%		<i>5-174</i>		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	85.2%		55-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	87.2%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	88.1%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	82.4%		41-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	78.4%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	83.4%		20-162		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	85.6%		37-140		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	85.6%		10-190		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	90.0%		42-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	85.6%		32-144		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	81.2%		30-142		5/9/24 0:37	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	92.8%		47-142		5/9/24 0:37	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	91.1%		50-150		5/9/24 0:37	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	61.2%		<i>5-167</i>		5/9/24 0:37	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	85.0%		45-200		5/9/24 0:37	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	73.6%		<i>5-170</i>		5/9/24 0:37	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	80.0%		10-200		5/9/24 0:37	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	70.8%		<i>5-150</i>		5/9/24 0:37	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	<i>62.8%</i>		<i>5-150</i>		5/9/24 0:37	MER	EPA 1633	

SW-1-050124 Sample Location:

Lab/Sample Number: MEE0128-04 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11CI-PF3OUdS	ND	ug/L	0.00392	0.0100	5/9/24 1:03	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	5/9/24 1:03	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	5/9/24 1:03	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	5/9/24 1:03	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00306	0.0200	5/9/24 1:03	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	5/9/24 1:03	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00428	0.0200	5/9/24 1:03	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00514	0.0100	5/9/24 1:03	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	5/9/24 1:03	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	5/9/24 1:03	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	5/9/24 1:03	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	5/9/24 1:03	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	5/9/24 1:03	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	5/9/24 1:03	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00124	0.0100	5/9/24 1:03	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00100	0.0100	5/9/24 1:03	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00186	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFBA	ND	ug/L	0.0147	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFBS	ND	ug/L	0.000660	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFDA	ND	ug/L	0.00238	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000920	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000840	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFHxS	ND	ug/L	0.00104	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFOA	ND	ug/L	0.00162	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFOS	ND	ug/L	0.00126	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFOSA	ND	ug/L	0.000900	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFPeA	ND	ug/L	0.00204	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00108	0.0100	5/9/24 1:03	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00100	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00310	0.0200	5/9/24 1:03	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00338	0.0200	5/9/24 1:03	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	83.8%		25-200		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS			24-200		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	88.8%		<i>5-200</i>		5/9/24 1:03	MER	EPA 1633	

Sample Location: SW-1-050124

MEE0128-04 Lab/Sample Number: Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	80.8%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	92.0%		<i>5-171</i>		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	91.6%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	77.0%		5-140		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	79.3%		25-160		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	93.0%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	58.8%		39-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	65.4%		52-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	75.0%		<i>5-174</i>		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	85.2%		55-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	92.4%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	86.4%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	82.4%		41-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	81.6%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	78.2%		20-162		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	99.2%		37-140		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	99.2%		10-190		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	82.8%		42-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	73.5%		32-144		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	85.6%		30-142		5/9/24 1:03	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	92.8%		47-142		5/9/24 1:03	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	87.8%		50-150		5/9/24 1:03	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	70.0%		<i>5-167</i>		5/9/24 1:03	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	76.8%		45-200		5/9/24 1:03	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	75.2%		<i>5-170</i>		5/9/24 1:03	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	71.2%		10-200		5/9/24 1:03	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	71.6%		<i>5-150</i>		5/9/24 1:03	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	72.0%		<i>5-150</i>		5/9/24 1:03	MER	EPA 1633	

SW-2-050124 Sample Location:

Lab/Sample Number: MEE0128-05 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11CI-PF3OUdS	ND	ug/L	0.00392	0.0100	5/9/24 1:29	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	5/9/24 1:29	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	5/9/24 1:29	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	5/9/24 1:29	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00306	0.0200	5/9/24 1:29	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	5/9/24 1:29	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00428	0.0200	5/9/24 1:29	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00514	0.0100	5/9/24 1:29	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	5/9/24 1:29	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	5/9/24 1:29	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	5/9/24 1:29	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	5/9/24 1:29	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	5/9/24 1:29	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	5/9/24 1:29	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00124	0.0100	5/9/24 1:29	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00100	0.0100	5/9/24 1:29	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00186	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFBA	ND	ug/L	0.0147	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFBS	ND	ug/L	0.000660	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFDA	ND	ug/L	0.00238	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000920	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000840	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFHxS	ND	ug/L	0.00104	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFOA	ND	ug/L	0.00162	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFOS	ND	ug/L	0.00126	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFOSA	ND	ug/L	0.000900	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFPeA	ND	ug/L	0.00204	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00108	0.0100	5/9/24 1:29	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00310	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00310	0.0200	5/9/24 1:29	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00338	0.0200	5/9/24 1:29	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS			25-200		5/9/24 1:29	MER	EPA 1633	-
Surrogate: 13C2-6:2FTS EIS	82.2%		24-200) 	5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	82.3%		5-200		5/9/24 1:29	MER	EPA 1633	

Sample Location: SW-2-050124

Lab/Sample Number: MEE0128-05 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	91.2%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	80.0%		<i>5-171</i>		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	91.6%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	62.8%		5-140		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	74.4%		25-160		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	90.6%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	51.1%		39-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	56.1%		52-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	66.9%		<i>5-174</i>		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	81.2%		55-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	91.2%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	86.8%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	76.4%		41-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	85.6%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	68.0%		20-162		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	76.3%		37-140		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	76.2%		10-190		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	82.0%		42-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	66.4%		32-144		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	84.4%		30-142		5/9/24 1:29	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	82.4%		47-142		5/9/24 1:29	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	87.8%		50-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	63.2%		<i>5-167</i>		5/9/24 1:29	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	71.0%		45-200		5/9/24 1:29	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	71.6%		5-170		5/9/24 1:29	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	64.8%		10-200		5/9/24 1:29	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	60.8%		5-150		5/9/24 1:29	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	74.0%		<i>5-150</i>		5/9/24 1:29	MER	EPA 1633	

WW-050124 Sample Location:

Lab/Sample Number: MEE0128-06 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Matrix: Wastewater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11Cl-PF3OUdS	ND	ug/L	0.00980	0.0250	5/9/24 1:54	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0281	0.125	5/9/24 1:54	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00790	0.0500	5/9/24 1:54	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.111	0.250	5/9/24 1:54	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00765	0.0500	5/9/24 1:54	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.118	0.250	5/9/24 1:54	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.0107	0.0500	5/9/24 1:54	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.0129	0.0250	5/9/24 1:54	MER	EPA 1633	U
ADONA	ND	ug/L	0.00975	0.0250	5/9/24 1:54	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00735	0.0250	5/9/24 1:54	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00445	0.0250	5/9/24 1:54	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00375	0.0250	5/9/24 1:54	MER	EPA 1633	U
N-EtFOSSA	0.00580	ug/L	0.00300	0.0250	5/9/24 1:54	MER	EPA 1633	J
NFDHA	ND	ug/L	0.0131	0.0500	5/9/24 1:54	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00310	0.0250	5/9/24 1:54	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00250	0.0250	5/9/24 1:54	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00465	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFBA	ND	ug/L	0.0367	0.0500	5/9/24 1:54	MER	EPA 1633	U
PFBS	0.00446	ug/L	0.00165	0.0250	5/9/24 1:54	MER	EPA 1633	J
PFDA	ND	ug/L	0.00595	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00480	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00265	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFDS	ND	ug/L	0.00230	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00580	0.0500	5/9/24 1:54	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00300	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFHpS	ND	ug/L	0.00230	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFHxA	0.00222	ug/L	0.00210	0.0250	5/9/24 1:54	MER	EPA 1633	J
PFHxS	ND	ug/L	0.00260	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00600	0.0500	5/9/24 1:54	MER	EPA 1633	U
PFMPA	0.00458	ug/L	0.00380	0.0500	5/9/24 1:54	MER	EPA 1633	J
PFNA	ND	ug/L	0.00305	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFNS	ND	ug/L	0.00265	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFOA	ND	ug/L	0.00405	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFOS	ND	ug/L	0.00315	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFOSA	ND	ug/L	0.00225	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFPeA	ND	ug/L	0.00510	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00270	0.0250	5/9/24 1:54	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00276	0.0500	5/9/24 1:54	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00775	0.0500	5/9/24 1:54	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00495	0.0250	5/9/24 1:54	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	81.2%		25-200)	5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	109%		24-200)	5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	106%		<i>5-200</i>		5/9/24 1:54	MER	EPA 1633	

WW-050124 Sample Location:

Lab/Sample Number: MEE0128-06 Collect Date: 05/01/24 00:00

Date Received: 05/06/24 10:20 Collected By: Holly

Matrix: Wastewater

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	95.2%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	59.8%		<i>5-171</i>		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	101%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	38.8%		5-140		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	74.8%		25-160		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	89.0%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	95.3%		39-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	86.9%		52-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	89.6%		<i>5-174</i>		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	85.6%		55-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	102%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	87.7%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	89.2%		41-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	95.2%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	79.6%		20-162		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	89.6%		37-140		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	70.1%		10-190		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	100%		42-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	88.9%		32-144		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	74.4%		30-142		5/9/24 1:54	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	92.0%		47-142		5/9/24 1:54	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	92.0%		50-150		5/9/24 1:54	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	56.0%		<i>5-167</i>		5/9/24 1:54	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	68.8%		45-200		5/9/24 1:54	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	69.6%		5-170		5/9/24 1:54	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	83.4%		10-200		5/9/24 1:54	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	64.0%		<i>5-150</i>		5/9/24 1:54	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	60.4%		<i>5-150</i>		5/9/24 1:54	MER	EPA 1633	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Compound was analyzed for but not detected

PQL Practical Quantitation Limit

ND Not Detected

MDL Method Detection Limit

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BEE0190 - PFAS 537										
Blank (BEE0190-BLK1)				Pre	epared: 05/06	5/24 14:13- Aı	nalyzed: 05/0	08/24 18:11		
PFBA Perfluorobutanoic acid	ND	U	1.00	ug/L						
PFPeA Perfluoropentanoic acid	ND	U	0.500	ug/L						
PFHxA Perfluorohexanoic acid	ND	U	0.500	ug/L						
PFHpA Perfluoroheptanoic acid	ND	U	0.500	ug/L						
PFOA Perfluorooctanoic acid	ND	U	0.500	ug/L						
PFNA Perfluorononanoic acid	ND	U	0.500	ug/L						
PFDA Perfluorodecanoic acid	ND	U	0.500	ug/L						
PFUnA Perfluoroundecanoic acid	ND	U	0.500	ug/L						
PFDoA Perfluorododecanoic acid	ND	U	0.500	ug/L						
PFTrDA	ND	U	1.00	ug/L						
PFTA Perfluorotetradecanoic acid	ND	U	1.00	ug/L						
PFBS Perfluorobutanesulfonic acid	ND	U	0.500	ug/L						
PFPeS Perfluoropentanesulfonic acid	ND	U	0.500	ug/L						
PFHxS Perfluorohexanesulfonic acid	ND	U	0.500	ug/L						
PFHpS Perfluoroheptanesulfonic acid	ND	U	0.500	ug/L						
PFOS Perfluorooctanesulfonic acid	ND	U	0.500	ug/L						
PFNS	ND	U	0.500	ug/L						
PFDS	ND	U	0.500	ug/L						
PFDoS	ND	U	0.500	ug/L						
4:2FTS 1H,1H,2H,2H-Perfluorohexane sulfonic	ND	U	1.00	ug/L						
6:2FTS 1H,1H,2H,2H-Perfluorooctane sulfonic	ND	U	1.00	ug/L						
8:2FTS 1H,1H,2H,2H-Perfluorodecane sulfonic	ND	U	1.00	ug/L						
PFOSA	ND	U	0.500	ug/L						
NMeFOSA	ND	U	0.500	ug/L						
NEtFOSA	ND	U	0.500	ug/L						
NMeFOSAA	ND	U	0.500	ug/L						
NEtFOSSA	ND	U	0.500	ug/L						
NMeFOSE	ND	U	0.500	ug/L						
NEtFOSE	ND	U	0.500	ug/L						
HFPO-DA Hexafuoropropylene oxide dimer acid	ND	U	0.500	ug/L						
ADONA 4,8-Dioxa-3H-perfluorononanoic acid	ND	U	0.500	ug/L						
9CI-PF3ONS	ND	U	0.500	ug/L						
11CI-PF3OUdS	ND	U	0.500	ug/L						
3:3FTCA	ND	U	2.50	ug/L						
5:3FTCA	ND	U	5.00	ug/L						
7:3FTCA	ND	U	5.00	ug/L						
PFEESA Perfluoro(2-ethoxyethane)sulfonic acid	ND	U	1.00	ug/L						
PFMPA Perfluoro-3-methoxypropanoic acid	ND	U	1.00	ug/L						
PFMBA Perfluoro-4-methoxybutanoic acid	ND	U	1.00	ug/L						
NFDHA Nonafluoro-3,6-dioxaheptanoic acid	ND	U	1.00	ug/L						
Surrogate: 13C4-PFBA EIS			8.14	ug/L	10.0		81.4	<i>5-174</i>		
Surrogate: 13C5-PFPeA EIS			4.14	ug/L	5.00		82.8	20-162		
Surrogate: 13C5-PFHxA EIS			2.04	ug/L	2.50		81.6	41-150		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BEE0190 - PFAS 537	(Continued)									
Blank (BEE0190-BLK1)	(Continueu)			Pre	epared: 05/06	5/24 14:13- Ar	nalyzed: 05/0	08/24 18:11		
Surrogate: 13C4-PFHpA EIS			<i>2.06</i>	ug/L	2.50		82.4	<i>55-150</i>		
Surrogate: 13C8-PFOA EIS			2.07	ug/L	2.50		82.8	<i>42-150</i>		
Surrogate: 13C9-PFNA EIS			1.02	ug/L	1.25		81.6	47-142		
Surrogate: 13C6-PFDA EIS			1.00	ug/L	1.25		80.0	37-140		
Surrogate: 13C7-PFUnA EIS			0.982	ug/L	1.25		78.6	10-190		
Surrogate: 13C2-PFDoA EIS			0.864	ug/L	1.25		69.1	<i>5-171</i>		
Surrogate: 13C2-PFTeDA EIS			0.777	ug/L	1.25		62.2	<i>5-140</i>		
Surrogate: 13C3-PFBS EIS			1.92	ug/L	2.33		82.4	39-150		
Surrogate: 13C3-PFHxS EIS			1.90	ug/L	2.37		80.2	52-150		
Surrogate: 13C8-PFOS EIS			2.02	ug/L	2.40		84.3	32-144		
Surrogate: 13C2-4:2FTS EIS			3.93	ug/L	4.69		83.8	25-200		
Surrogate: 13C2-6:2FTS EIS			3.82	ug/L	4.76		80.3	24-200		
Surrogate: 13C2-8:2FTS EIS			<i>3.97</i>	ug/L	4.80		82.7	5-200		
Surrogate: 13C8-PFOSA EIS			1.97	ug/L	2.50		78.8	30-142		
Surrogate: D3-NMeFOSA EIS			1.55	ug/L	2.50		62.0	<i>5-167</i>		
Surrogate: D5-NEtFOSA EIS			1.78	ug/L	2.50		71.2	<i>5-170</i>		
Surrogate: D3-NMeFOSAA EIS			4.15	ug/L	5.00		83.0	45-200		
Surrogate: D5-NEtFOSAA EIS			4.02	ug/L	5.00		80.4	10-200		
Surrogate: D7-NMeFOSE EIS			17.8	ug/L	25.0		71.2	<i>5-150</i>		
Surrogate: D9-NEtFOSE EIS			18.6	ug/L	25.0		74.4	<i>5-150</i>		
Surrogate: 13C3-HFPO-DA EIS			8.13	ug/L	10.0		81.3	<i>25-160</i>		
Surrogate: 13C3-PFBA NIS			5.09	ug/L	5.00		102	50-150		
Surrogate: 13C2-PFHxA NIS			2.41	ug/L	2.50		96.4	50-150		
Surrogate: 13C4-PFOA NIS			2.46	ug/L	2.50		98.4	50-150		
Surrogate: 13C5-PFNA NIS			1.20	ug/L	1.25		96.0	50-150		
Surrogate: 13C2-PFDA NIS			1.21	ug/L	1.25		96.8	50-150		
Surrogate: 1802-PFHxS NIS			2.39	ug/L	2.37		101	50-150		
Surrogate: 13C4-PFOS NIS			2.25	ug/L	2.40		93.9	50-150		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BEE0190 - PFAS 537 (Cont	inued)								
LCS (BEE0190-BS1)			Pre	epared: 05/06	5/24 14:13- Aı	nalyzed: 05/0	08/24 18:36		
PFBA Perfluorobutanoic acid	8.85	1.00	ug/L	10.0		88.5	50-150		
PFPeA Perfluoropentanoic acid	4.33	0.500	ug/L	5.00		86.6	50-150		
PFHxA Perfluorohexanoic acid	2.12	0.500	ug/L	2.50		84.8	50-150		
PFHpA Perfluoroheptanoic acid	2.15	0.500	ug/L	2.50		86.0	50-150		
PFOA Perfluorooctanoic acid	2.13	0.500	ug/L	2.50		85.2	50-150		
PFNA Perfluorononanoic acid	2.17	0.500	ug/L	2.50		86.8	50-150		
PFDA Perfluorodecanoic acid	1.83	0.500	ug/L	2.50		73.2	50-150		
PFUnA Perfluoroundecanoic acid	1.80	0.500	ug/L	2.50		72.0	50-150		
PFDoA Perfluorododecanoic acid	1.89	0.500	ug/L	2.50		75.6	50-150		
PFTrDA	1.74	1.00	ug/L	2.50		69.6	50-150		
PFTA Perfluorotetradecanoic acid	2.34	1.00	ug/L	2.50		93.6	50-150		
PFBS Perfluorobutanesulfonic acid	1.80	0.500	ug/L	2.21		81.4	50-150		
PFPeS Perfluoropentanesulfonic acid	2.07	0.500	ug/L	2.35		88.1	50-150		
PFHxS Perfluorohexanesulfonic acid	2.04	0.500	ug/L	2.29		89.2	50-150		
PFHpS Perfluoroheptanesulfonic acid	2.12	0.500	ug/L	2.39		88.8	50-150		
PFOS Perfluorooctanesulfonic acid	2.03	0.500	ug/L	2.33		87.3	50-150		
PFNS	2.08	0.500	ug/L	2.40		86.7	50-150		
PFDS	2.15	0.500	ug/L	2.41		89.1	50-150		
PFDoS	2.09	0.500	ug/L	2.43		86.2	50-150		
4:2FTS 1H,1H,2H,2H-Perfluorohexane sulfonic	8.64	1.00	ug/L	9.38		92.2	50-150		
6:2FTS 1H,1H,2H,2H-Perfluorooctane sulfonic	8.62	1.00	ug/L	9.50		90.7	50-150		
8:2FTS 1H,1H,2H,2H-Perfluorodecane sulfonic	8.97	1.00	ug/L	9.60		93.4	50-150		
PFOSA	2.39	0.500	ug/L	2.50		95.6	50-150		
NMeFOSA	2.36	0.500	ug/L	2.50		94.4	50-150		
NEtFOSA	1.78	0.500	ug/L	2.50		71.2	50-150		
NMeFOSAA	2.29	0.500	ug/L	2.50		91.6	50-150		
NEtFOSSA	2.35	0.500	ug/L	2.50		94.0	50-150		
NMeFOSE	2.84	0.500	ug/L	2.50		114	50-150		
NETFOSE	2.46	0.500	ug/L	2.50		98.4	50-150		
HFPO-DA Hexafuoropropylene oxide dimer acic	4.92	0.500	ug/L	5.00		98.4	50-150		
ADONA 4,8-Dioxa-3H-perfluorononanoic acid	4.82	0.500	ug/L	4.73		102	50-150		
9CI-PF3ONS	4.60	0.500	ug/L	4.68		98.4	50-150		
11CI-PF3OUdS	4.52	0.500	ug/L	4.73		95.7	50-150		
3:3FTCA	10.8	2.50	ug/L	10.0		108	50-150		
5:3FTCA	51.3	5.00	ug/L	50.0		103	50-150		
7:3FTCA	57.2	5.00	ug/L	50.0		114	50-150		
PFEESA Perfluoro(2-ethoxyethane)sulfonic acid	4.02	1.00	ug/L	4.45		90.3	50-150		
PFMPA Perfluoro-3-methoxypropanoic acid	4.91	1.00	ug/L ug/L	5.00		98.2	50-150		
PFMBA Perfluoro-4-methoxybutanoic acid	4.82	1.00	ug/L ug/L	5.00		96.4	50-150		
NFDHA Nonafluoro-3,6-dioxaheptanoic acid	4.52	1.00	ug/L ug/L	5.00		90.4	50-150		
Surrogate: 13C4-PFBA EIS	···	8.27		10.0		82.7	5-174		
Surrogate: 13C4-PFBA EIS Surrogate: 13C5-PFPeA EIS		8.27 4.06	ug/L ug/L	10.0 5.00		82.7 81.2	5-1/4 20-162		
Surrogate: 13C5-PFHxA EIS		2.11	ug/L	2.50		84.4	41-150		
Surrogate: 13C4-PFHpA EIS		2.04	ug/L	2.50		81.6	55-150		
Surrogate: 13C8-PFOA EIS		2.33	ug/L	2.50		93.2	42-150		
Surrogate: 13C9-PFNA EIS		1.18	ug/L	1.25		94.4	47-142		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BEE0190 - PFAS 537	(Continued)									
LCS (BEE0190-BS1)				Pre	epared: 05/06	5/24 14:13- Aı	nalyzed: 05/0	08/24 18:36		
Surrogate: 13C6-PFDA EIS			1.14	ug/L	1.25		91.2	37-140		
Surrogate: 13C7-PFUnA EIS			1.11	ug/L	1.25		88.8	10-190		
Surrogate: 13C2-PFDoA EIS			1.09	ug/L	1.25		87.2	<i>5-171</i>		
Surrogate: 13C2-PFTeDA EIS			0.974	ug/L	1.25		77.9	<i>5-140</i>		
Surrogate: 13C3-PFBS EIS			2.10	ug/L	2.33		90.1	39-150		
Surrogate: 13C3-PFHxS EIS			2.00	ug/L	2.37		84.4	<i>52-150</i>		
Surrogate: 13C8-PFOS EIS			2.07	ug/L	2.40		86.4	32-144		
Surrogate: 13C2-4:2FTS EIS			4.08	ug/L	4.69		87.0	25-200		
Surrogate: 13C2-6:2FTS EIS			4.12	ug/L	4.76		86.6	24-200		
Surrogate: 13C2-8:2FTS EIS			4.12	ug/L	4.80		85.8	<i>5-200</i>		
Surrogate: 13C8-PFOSA EIS			1.94	ug/L	2.50		77.6	30-142		
Surrogate: D3-NMeFOSA EIS			1.57	ug/L	2.50		62.8	<i>5-167</i>		
Surrogate: D5-NEtFOSA EIS			1.93	ug/L	2.50		77.2	<i>5-170</i>		
Surrogate: D3-NMeFOSAA EIS			4.40	ug/L	5.00		88.0	45-200		
Surrogate: D5-NEtFOSAA EIS			4.14	ug/L	5.00		82.8	10-200		
Surrogate: D7-NMeFOSE EIS			17.4	ug/L	25.0		69.6	<i>5-150</i>		
Surrogate: D9-NEtFOSE EIS			18.8	ug/L	25.0		75.2	<i>5-150</i>		
Surrogate: 13C3-HFPO-DA EIS			7.39	ug/L	10.0		73.9	25-160		
Surrogate: 13C3-PFBA NIS			4.59	ug/L	5.00		91.8	50-150		
Surrogate: 13C2-PFHxA NIS			2.29	ug/L	2.50		91.6	<i>50-150</i>		
Surrogate: 13C4-PFOA NIS			2.15	ug/L	2.50		86.0	50-150		
Surrogate: 13C5-PFNA NIS			1.07	ug/L	1.25		85.6	50-150		
Surrogate: 13C2-PFDA NIS			1.11	ug/L	1.25		88.8	50-150		
Surrogate: 1802-PFHxS NIS			2.05	ug/L	2.37		86.5	50-150		
Surrogate: 13C4-PFOS NIS			2.04	ug/L	2.40		<i>85.2</i>	<i>50-150</i>		

Chain of Custody Record

And 1282 Alturas Drive, 504 E Sprague Ste D,

Due: 05/20/24

Compa	any Name: 6S	11	NATER	2 SOW	TIONSINC	Proje	ect Mar	ager:	Er	ZIK	HE	DB	ER	6					
, tadiot	55. 650 N	5 17	TOWN	THY S	1 12661	Proje	ect Nan	ne & #	t: RA	SANTION	TIA	Wv.	舒	MON	TION	Ple www.anateklabs.co	m/pricing-lists		
	PORTLAN				-											A INUITIAL		Phone	-
Phone	(503) 2	39	- 879	9	com, en	Sam	pler Na	me &	Phon	e: H	011	12	NON	200 r	n	Next Day* 2nd Day* *All rush	order requ		
Email /	Address(es):	, na	11@ g	· zwiz	com, en	ed	berg	10	95	.zwi	con	n				Other* hav	e prior app	roval	
									List	Analy	ses	Requ	ieste	d		Note Special Instruc	tions/Cor	nments	
							ervative:	3					_						٦
						Containers	e Volun	1633											
Lab ID	Sample Identific	ation	Sampling	g Date/Time	Matrix	# of Cc	Sample Volume	¥dZ											
	MW-1-050			01/24			625												
	MW-2-05						625												
	MW-39-0				GW		625												
	SW-1-050				SW		425												
	SW-2-050				SW	-	625					_				Inspection C			
	WW-050	124	051	01/24	WW	3	623	~			_	_	_			Received Intact?	Y	Ν	
				4-11-1		_					_	\perp				Labels & Chains Agree?	Υ	N	
						_					_	_				Containers Sealed?	Y	Ν	
												_				No VOC Head Space?	Υ	N	
											_	_				Cooler?	Υ	Ν	
											_	_	_			Ice/Ice Packs Present?	Υ	Ν	
						-					_	-	+	-		<u> </u>			
	57/01/05/05/05/05/05	Printe	ed Name		Signature	<u> </u>				Compo			Da			Temperature (°C):			-
							• 77/2	1		Compa			Da		Time	Number of Containers:			-
Relinq	uished by	_		OPLOM	hullyr	wr	DIV			681	W.	<u>S</u>	Q.	5/02	11-3	Shipped Via:			
Receiv	ed by	1	B										5/6	124	10:5	Preservative:			_
Relinq	uished by																		
Receiv	ed by															Date & Time:			
Relinq	uished by															Inspected By:			
Receiv	ved by															2			

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report.

Anatek Labs, Inc.

t Skid, ednave :* Primi

Sample Receipt and Preservation Form

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Client Name: GST			The second second	
TAT: Normal RUSH: da	ays			Paparati
Samples' Received From: FedEx	PS USPS Client Co	urier Other:		Page 1 of h
Custody Seal on Cooler/Box: Yes	No Custody Seals I	ntact: (Yes), No	N/A	
Number of Coolers/Boxes:1	Type of Ice: V	Vet Ice Qce Packs	Dry Ice	None
Packing Material: Bubble Wrap Ba	gs Foam/Peanuts Par	per None Othe	er:	
Cooler Temp As Read (°C): 5.4"	Cooler Temp Corrected (°C): Thermo	meter Used:	IR-4 (R-5)
Client Name	6		0.000	tics resortions; sometime systems; is a sometime.
Samples Received Intact?	Yes No N/A	[Comments:	Estant (i)
Chain of Custody Present/Complete?	Yes No N/A		with the same of	
Labels and Chains Agree?	Yes No N/A			-Paris 2 5/4.
Samples Received Within Hold Time?	Yes No N/A			
Correct Containers Received?	Yes No N/A		- Set	1947 1 175 175 175 175 175 175 175 175 175
Anatek Bottles Used?	Yes No Unknown		I No. 1 a.s.	N. C.
Total Number of Sample Bottles Receive soking Material Cobie	The second secon		Dry Ice	None
		Initial pH:	pH	Paper ID:
Samples Properly Preserved? Cooler Lerm As Read (C) If No, record preservation and	(Yes ⁾ No N/A d pH-after details	<2 or	-ler-Osed	-1FR-4 1FR-5
VOC Vials Free of Headspace (<6mm)?	Yes No (NA)		wheres:	Redenie 173
VOC Trip Blanks Present?	Yes No MA		A PROPERTY OF THE PROPERTY OF	TAIT TURNS THE TAIL THE
Chain of Clistolly Fin A		y	\$3 mil 40.1 mil 40.1	
I bots and the				- Alexandra de Argento de Como
Record preservatives (and lot numbers, in	f known) for containers below	<u></u>	9 10 19 19 1	
1633×17			216	
P125 1633x6			1.27 3 100	None
Facklig Material Public			717	Paper4D:
Samples Property F. eserve			7,7	+ = = + + + + + + + + + + + + + + + + +
Cooler Temp As treat CC and I f No record by			· er Ussel-	-19 -2
TOC Vials Pred of handspace			11	
Notes, comments, etc. (also use this spa	ace if contacting the client - re-	cord names and date	Miles Cale	
Creary Custons and	dec il contacting the client - re	cord flames and date	e/time)	
				and with the transfer and the
36 37 496 1 5 1 1 2 1 2 1 2 1 3 2 1				
tustas na Nomeo Const			100	
Post in American State Transfer American				Name
otalifucation to the control			Mary and the second	The state of the s
20 Mg,W 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			ŭ₽.	Papari D
Received/Inspected By:	ac. a	16/20 1000		A CONTRACT OF THE PARTY OF THE
Received/Inspected By: 75 Form F19.01 - Eff 1 Dec 2022	Date/Time: <i>5</i> /	16/24 10:2	20	111
Tomic 19.01 - En 1 Dec 2022			The second second second	Page 1 of 1

Page 21 of 21

Analytical Results Report For:

GSI Water Solutions, Inc.

Project Number:

Santiam Canyon 00464.020.

Anatek Work Order:

MEF0657

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Client: GSI Water Solutions, Inc.

Address: 650 NE Holladay Street, Suite 900

Portland, OR 97232

Attn: Erik Hedberg

Work Order: MEF0657

Project: Santiam Canyon 00464.020.

Reported: 7/10/2024 11:10

Analytical Results Report

Sample Location: MW-35-062024

Lab/Sample Number: MEF0657-01 Collect Date: 06/20/24 00:00

Date Received: 06/21/24 11:11 Collected By:

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11CI-PF3OUdS	ND	ug/L	0.00391	0.00998	6/28/24 10:35	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0499	6/28/24 10:35	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00315	0.0200	6/28/24 10:35	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0444	0.0998	6/28/24 10:35	MER	EPA 1633	U
5:2FTS	ND	ug/L	0.00306	0.0200	6/28/24 10:35	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0473	0.0998	6/28/24 10:35	MER	EPA 1633	U
3:2FTS	ND	ug/L	0.00427	0.0200	6/28/24 10:35	MER	EPA 1633	U
CI-PF3ONS	ND	ug/L	0.00513	0.00998	6/28/24 10:35	MER	EPA 1633	U
ADONA	ND	ug/L	0.00389	0.00998	6/28/24 10:35	MER	EPA 1633	U
IFPO-DA	ND	ug/L	0.00294	0.00998	6/28/24 10:35	MER	EPA 1633	U
IEtFOSA	ND	ug/L	0.00178	0.00998	6/28/24 10:35	MER	EPA 1633	U
NETFOSE	ND	ug/L	0.00150	0.00998	6/28/24 10:35	MER	EPA 1633	U
I-EtFOSSA	ND	ug/L	0.00120	0.00998	6/28/24 10:35	MER	EPA 1633	U
IFDHA	ND	ug/L	0.00521	0.0200	6/28/24 10:35	MER	EPA 1633	U
IMeFOSA	ND	ug/L	0.00124	0.00998	6/28/24 10:35	MER	EPA 1633	U
I-MeFOSAA	ND	ug/L	0.000998	0.00998	6/28/24 10:35	MER	EPA 1633	U
IMeFOSE	ND	ug/L	0.00186	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFBA	ND	ug/L	0.0200	0.0399	6/28/24 10:35	MER	EPA 1633	U
FBS	0.00198	ug/L	0.000659	0.00998	6/28/24 10:35	MER	EPA 1633	J
PFDA	ND	ug/L	0.00238	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFDS	ND	ug/L	0.000919	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	6/28/24 10:35	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000919	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000839	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFHxS	ND	ug/L	0.00104	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	6/28/24 10:35	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	6/28/24 10:35	MER	EPA 1633	U
FNA	ND	ug/L	0.00122	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFOA	ND	ug/L	0.00162	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFOS	0.00413	ug/L	0.00126	0.00998	6/28/24 10:35	MER	EPA 1633	J
PFOSA	ND	ug/L	0.000899	0.00998	6/28/24 10:35	MER	EPA 1633	U

Sample Location: MW-35-062024

Lab/Sample Number: MEF0657-01 Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
PFPeA	ND	ug/L	0.00204	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFPeS	ND	ug/L	0.00108	0.00998	6/28/24 10:35	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00310	0.0200	6/28/24 10:35	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00357	0.0200	6/28/24 10:35	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00198	0.00998	6/28/24 10:35	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	137%		25-200)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	141%		24-200)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	141%		5-200		6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-PFDA NIS	88.0%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	107%		<i>5-171</i>		6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	86.0%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	80.0%		5-140		6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	157%		25-160)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	85.6%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	123%		39-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	126%		52-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	128%		5-174		6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	127%		55-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	90.0%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	83.9%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	132%		41-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	92.8%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	124%		20-162	?	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	114%		37-140)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	136%		10-190)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	120%		42-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	125%		32-14	1	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	119%		30-142	?	6/28/24 10:35	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	116%		47-142	?	6/28/24 10:35	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	89.9%		50-150)	6/28/24 10:35	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	80.0%		5-167		6/28/24 10:35	MER	EPA 1633	

Sample Location: MW-35-062024

Lab/Sample Number: MEF0657-01 Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)							
Surrogate: D3-NMeFOSAA EIS	127%		45-200	6/28/24 10:35	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	75.6%		<i>5-170</i>	6/28/24 10:35	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	127%		10-200	6/28/24 10:35	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	94.8%		<i>5-150</i>	6/28/24 10:35	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	95.2%		<i>5-150</i>	6/28/24 10:35	MER	EPA 1633	

Sample Location: MW-4-062024

Lab/Sample Number: MEF0657-02 Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11Cl-PF3OUdS	ND	ug/L	0.00176	0.00449	6/28/24 11:00	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.00504	0.0225	6/28/24 11:00	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00142	0.00898	6/28/24 11:00	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0200	0.0449	6/28/24 11:00	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00137	0.00898	6/28/24 11:00	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0213	0.0449	6/28/24 11:00	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00192	0.00898	6/28/24 11:00	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00231	0.00449	6/28/24 11:00	MER	EPA 1633	U
ADONA	ND	ug/L	0.00175	0.00449	6/28/24 11:00	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00132	0.00449	6/28/24 11:00	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.000799	0.00449	6/28/24 11:00	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.000674	0.00449	6/28/24 11:00	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.000539	0.00449	6/28/24 11:00	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00234	0.00898	6/28/24 11:00	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.000557	0.00449	6/28/24 11:00	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.000449	0.00449	6/28/24 11:00	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.000835	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFBA	ND	ug/L	0.00898	0.0180	6/28/24 11:00	MER	EPA 1633	U
PFBS	ND	ug/L	0.000296	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFDA	ND	ug/L	0.00107	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFDoA	ND	ug/L	0.000862	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFDoS	ND	ug/L	0.000476	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFDS	ND	ug/L	0.000413	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00104	0.00898	6/28/24 11:00	MER	EPA 1633	U
PFHpA	ND	ug/L	0.000539	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000333	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000377	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFHxS	ND	ug/L	0.000377	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00108	0.00898	6/28/24 11:00	MER	EPA 1633	U
PFMPA	ND	ug/L	0.000683	0.00898	6/28/24 11:00	MER	EPA 1633	U
PFNA	ND	ug/L	0.000548	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFNS	ND	ug/L	0.000346	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFOA	ND	ug/L	0.000778	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFOS	ND	ug/L	0.000726	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFOSA	ND	ug/L	0.000300	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFPeA	ND	ug/L ug/L	0.000404	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFPeS	ND	ug/L ug/L	0.000916	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFTeDA	ND	ug/L ug/L	0.000485	0.00449	6/28/24 11:00	MER	EPA 1633	U
PFTrDA	ND	ug/L ug/L	0.00139	0.00898	6/28/24 11:00	MER	EPA 1633	U
PFUnA	ND	ug/L ug/L	0.00161	0.00898	6/28/24 11:00	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	109%		25-200		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	115%		24-200		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	118%		5-200	1	6/28/24 11:00	MER	EPA 1633	

Sample Location: MW-4-062024

MEF0657-02 Lab/Sample Number: Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	88.8%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	96.8%		<i>5-171</i>		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	96.4%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	79.1%		5-140		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	114%		25-160		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	98.4%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	102%		39-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	103%		52-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	104%		<i>5-174</i>		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	102%		55-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	94.4%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	91.9%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	104%		41-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	96.0%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	104%		20-162		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	112%		37-140		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	107%		10-190		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	107%		42-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	99.8%		32-144		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	97.6%		30-142		6/28/24 11:00	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	92.8%		47-142		6/28/24 11:00	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	99.2%		50-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	67.2%		<i>5-167</i>		6/28/24 11:00	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	105%		45-200		6/28/24 11:00	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	70.0%		5-170		6/28/24 11:00	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	103%		10-200		6/28/24 11:00	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	68.4%		5-150		6/28/24 11:00	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	72.0%		<i>5-150</i>		6/28/24 11:00	MER	EPA 1633	

Sample Location: MW2-062024

Lab/Sample Number: MEF0657-03 Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles								
11CI-PF3OUdS	ND	ug/L	0.00392	0.0100	6/28/24 11:26	MER	EPA 1633	U
3:3FTCA	ND	ug/L	0.0112	0.0500	6/28/24 11:26	MER	EPA 1633	U
4:2FTS	ND	ug/L	0.00316	0.0200	6/28/24 11:26	MER	EPA 1633	U
5:3FTCA	ND	ug/L	0.0445	0.100	6/28/24 11:26	MER	EPA 1633	U
6:2FTS	ND	ug/L	0.00306	0.0200	6/28/24 11:26	MER	EPA 1633	U
7:3FTCA	ND	ug/L	0.0474	0.100	6/28/24 11:26	MER	EPA 1633	U
8:2FTS	ND	ug/L	0.00428	0.0200	6/28/24 11:26	MER	EPA 1633	U
9CI-PF3ONS	ND	ug/L	0.00514	0.0100	6/28/24 11:26	MER	EPA 1633	U
ADONA	ND	ug/L	0.00390	0.0100	6/28/24 11:26	MER	EPA 1633	U
HFPO-DA	ND	ug/L	0.00294	0.0100	6/28/24 11:26	MER	EPA 1633	U
NEtFOSA	ND	ug/L	0.00178	0.0100	6/28/24 11:26	MER	EPA 1633	U
NEtFOSE	ND	ug/L	0.00150	0.0100	6/28/24 11:26	MER	EPA 1633	U
N-EtFOSSA	ND	ug/L	0.00120	0.0100	6/28/24 11:26	MER	EPA 1633	U
NFDHA	ND	ug/L	0.00522	0.0200	6/28/24 11:26	MER	EPA 1633	U
NMeFOSA	ND	ug/L	0.00124	0.0100	6/28/24 11:26	MER	EPA 1633	U
N-MeFOSAA	ND	ug/L	0.00100	0.0100	6/28/24 11:26	MER	EPA 1633	U
NMeFOSE	ND	ug/L	0.00186	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFBA	ND	ug/L	0.0200	0.0400	6/28/24 11:26	MER	EPA 1633	U
PFBS	ND	ug/L	0.000660	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFDA	ND	ug/L	0.00238	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFDoA	ND	ug/L	0.00192	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFDoS	ND	ug/L	0.00106	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFDS	ND	ug/L	0.000920	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFEESA	ND	ug/L	0.00232	0.0200	6/28/24 11:26	MER	EPA 1633	U
PFHpA	ND	ug/L	0.00120	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFHpS	ND	ug/L	0.000920	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFHxA	ND	ug/L	0.000840	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFHxS	ND	ug/L	0.00104	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFMBA	ND	ug/L	0.00240	0.0200	6/28/24 11:26	MER	EPA 1633	U
PFMPA	ND	ug/L	0.00152	0.0200	6/28/24 11:26	MER	EPA 1633	U
PFNA	ND	ug/L	0.00122	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFNS	ND	ug/L	0.00106	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFOA	ND	ug/L	0.00162	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFOS	ND	ug/L	0.00126	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFOSA	ND	ug/L	0.000900	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFPeA	0.00238	ug/L	0.00204	0.0100	6/28/24 11:26	MER	EPA 1633	J
PFPeS	ND	ug/L	0.00108	0.0100	6/28/24 11:26	MER	EPA 1633	U
PFTeDA	ND	ug/L	0.00310	0.0200	6/28/24 11:26	MER	EPA 1633	U
PFTrDA	ND	ug/L	0.00358	0.0200	6/28/24 11:26	MER	EPA 1633	U
PFUnA	ND	ug/L	0.00198	0.0100	6/28/24 11:26	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	139%		25-200) 	6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	140%		24-200)	6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	138%		5-200		6/28/24 11:26	MER	EPA 1633	

Sample Location: MW2-062024

MEF0657-03 Collect Date: Lab/Sample Number: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	82.4%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	112%		<i>5-171</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	85.2%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	97.6%		5-140		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	144%		25-160		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	85.6%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	122%		39-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	125%		<i>52-150</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	130%		<i>5-174</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	135%		55-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	94.8%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	86.4%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	122%		41-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	83.2%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	123%		20-162		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	125%		<i>37-140</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	140%		10-190		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	121%		42-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	119%		32-144		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	119%		30-142		6/28/24 11:26	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	128%		47-142		6/28/24 11:26	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	88.6%		50-150		6/28/24 11:26	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	81.2%		<i>5-167</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	120%		45-200		6/28/24 11:26	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	81.2%		<i>5-170</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	122%		10-200		6/28/24 11:26	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	88.0%		<i>5-150</i>		6/28/24 11:26	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS			<i>5-150</i>		6/28/24 11:26	MER	EPA 1633	

Sample Location: MW3-062024

Lab/Sample Number: Collect Date: MEF0657-04 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
emivolatiles								
1CI-PF3OUdS	ND	ug/L	0.00486	0.0124	6/28/24 11:52	MER	EPA 1633	U
:3FTCA	ND	ug/L	0.0139	0.0620	6/28/24 11:52	MER	EPA 1633	U
:2FTS	ND	ug/L	0.00392	0.0248	6/28/24 11:52	MER	EPA 1633	U
:3FTCA	ND	ug/L	0.0551	0.124	6/28/24 11:52	MER	EPA 1633	U
:2FTS	ND	ug/L	0.00379	0.0248	6/28/24 11:52	MER	EPA 1633	U
':3FTCA	ND	ug/L	0.0587	0.124	6/28/24 11:52	MER	EPA 1633	U
3:2FTS	ND	ug/L	0.00530	0.0248	6/28/24 11:52	MER	EPA 1633	U
CI-PF3ONS	ND	ug/L	0.00637	0.0124	6/28/24 11:52	MER	EPA 1633	U
ADONA	ND	ug/L	0.00483	0.0124	6/28/24 11:52	MER	EPA 1633	U
IFPO-DA	ND	ug/L	0.00364	0.0124	6/28/24 11:52	MER	EPA 1633	U
IEtFOSA	ND	ug/L	0.00221	0.0124	6/28/24 11:52	MER	EPA 1633	U
IEtFOSE	ND	ug/L	0.00186	0.0124	6/28/24 11:52	MER	EPA 1633	U
I-EtFOSSA	ND	ug/L	0.00149	0.0124	6/28/24 11:52	MER	EPA 1633	U
IFDHA	ND	ug/L	0.00647	0.0248	6/28/24 11:52	MER	EPA 1633	U
IMeFOSA	ND	ug/L	0.00154	0.0124	6/28/24 11:52	MER	EPA 1633	U
I-MeFOSAA	ND	ug/L	0.00124	0.0124	6/28/24 11:52	MER	EPA 1633	U
IMeFOSE	ND	ug/L	0.00231	0.0124	6/28/24 11:52	MER	EPA 1633	U
FBA	ND	ug/L	0.0248	0.0496	6/28/24 11:52	MER	EPA 1633	U
FBS	ND	ug/L	0.000818	0.0124	6/28/24 11:52	MER	EPA 1633	U
FDA	ND	ug/L	0.00295	0.0124	6/28/24 11:52	MER	EPA 1633	U
FDoA	ND	ug/L	0.00238	0.0124	6/28/24 11:52	MER	EPA 1633	U
FDoS	ND	ug/L	0.00131	0.0124	6/28/24 11:52	MER	EPA 1633	U
FDS	ND	ug/L	0.00114	0.0124	6/28/24 11:52	MER	EPA 1633	U
FEESA	ND	ug/L	0.00288	0.0248	6/28/24 11:52	MER	EPA 1633	U
FHpA	ND	ug/L	0.00149	0.0124	6/28/24 11:52	MER	EPA 1633	U
PFHpS	ND	ug/L	0.00114	0.0124	6/28/24 11:52	MER	EPA 1633	U
FHxA	ND	ug/L	0.00104	0.0124	6/28/24 11:52	MER	EPA 1633	U
FHxS	ND	ug/L	0.00129	0.0124	6/28/24 11:52	MER	EPA 1633	U
FMBA	ND	ug/L	0.00123	0.0248	6/28/24 11:52	MER	EPA 1633	U
FMPA	ND	ug/L	0.00188	0.0248	6/28/24 11:52	MER	EPA 1633	U
FNA	ND	ug/L	0.00155	0.0124	6/28/24 11:52	MER	EPA 1633	U
FNS	ND	ug/L	0.00131	0.0124	6/28/24 11:52	MER	EPA 1633	U
FOA	ND	ug/L	0.00201	0.0124	6/28/24 11:52	MER	EPA 1633	U
FOS	ND	ug/L	0.00261	0.0124	6/28/24 11:52	MER	EPA 1633	U
FOSA	ND	ug/L	0.00130	0.0124	6/28/24 11:52	MER	EPA 1633	U
FPeA	0.00560	ug/L	0.00253	0.0124	6/28/24 11:52	MER	EPA 1633	1
FPeS	ND	ug/L	0.00233	0.0124	6/28/24 11:52	MER	EPA 1633	U
FTeDA	0.0106	ug/L	0.00154	0.0124	6/28/24 11:52	MER	EPA 1633	1
FTrDA	0.0146	ug/L	0.00364	0.0248	6/28/24 11:52	MER	EPA 1633]
FUnA	0.0140 ND	ug/L ug/L	0.00444	0.0248	6/28/24 11:52	MER	EPA 1633	U
Surrogate: 13C2-4:2FTS EIS	125%		25-200) 	6/28/24 11:52	<i>MER</i> 	EPA 1633	
Surrogate: 13C2-6:2FTS EIS	126%		24-200)	6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C2-8:2FTS EIS	124%		5-200		6/28/24 11:52	MER	EPA 1633	

Sample Location: MW3-062024

MEF0657-04 Lab/Sample Number: Collect Date: 06/20/24 00:00

Collected By: Date Received: 06/21/24 11:11

Analyte	Result	Units	MDL	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles (Continued)								
Surrogate: 13C2-PFDA NIS	108%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C2-PFDoA EIS	84.0%		<i>5-171</i>		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C2-PFHxA NIS	106%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C2-PFTeDA EIS	67.4%		5-140		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C3-HFPO-DA EIS	90.8%		25-160		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C3-PFBA NIS	101%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C3-PFBS EIS	109%		39-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C3-PFHxS EIS	111%		52-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C4-PFBA EIS	110%		<i>5-174</i>		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C4-PFHpA EIS	106%		55-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C4-PFOA NIS	106%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C4-PFOS NIS	102%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C5-PFHxA EIS	99.6%		41-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C5-PFNA NIS	104%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C5-PFPeA EIS	102%		20-162		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C6-PFDA EIS	99.2%		37-140		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C7-PFUnA EIS	106%		10-190		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C8-PFOA EIS	106%		42-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C8-PFOS EIS	105%		32-144		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C8-PFOSA EIS	104%		30-142		6/28/24 11:52	MER	EPA 1633	
Surrogate: 13C9-PFNA EIS	110%		47-142		6/28/24 11:52	MER	EPA 1633	
Surrogate: 1802-PFHxS NIS	102%		50-150		6/28/24 11:52	MER	EPA 1633	
Surrogate: D3-NMeFOSA EIS	60.4%		<i>5-167</i>		6/28/24 11:52	MER	EPA 1633	
Surrogate: D3-NMeFOSAA EIS	104%		45-200		6/28/24 11:52	MER	EPA 1633	
Surrogate: D5-NEtFOSA EIS	67.6%		<i>5-170</i>		6/28/24 11:52	MER	EPA 1633	
Surrogate: D5-NEtFOSAA EIS	100%		10-200		6/28/24 11:52	MER	EPA 1633	
Surrogate: D7-NMeFOSE EIS	64.0%		<i>5-150</i>		6/28/24 11:52	MER	EPA 1633	
Surrogate: D9-NEtFOSE EIS	56.8%		<i>5-150</i>		6/28/24 11:52	MER	EPA 1633	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - email spokane@anateklabs.com

Authorized Signature,

Cheyenne Garrett For Todd Taruscio, Laboratory Manager

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Compound was analyzed for but not detected

PQL Practical Quantitation Limit

ND Not Detected

MDL Method Detection Limit

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BEF1013 - PFAS 537										
Blank (BEF1013-BLK1)				Pro	epared: 06/24	1/24 15:24- Ar	nalyzed: 06/2	8/24 05:52		
PFBA Perfluorobutanoic acid	ND	U	0.0400	ug/L						
PFPeA Perfluoropentanoic acid	ND	U	0.0100	ug/L						
PFHxA Perfluorohexanoic acid	ND	U	0.0100	ug/L						
PFHpA Perfluoroheptanoic acid	ND	U	0.0100	ug/L						
PFOA Perfluorooctanoic acid	ND	U	0.0100	ug/L						
PFNA Perfluorononanoic acid	ND	U	0.0100	ug/L						
PFDA Perfluorodecanoic acid	ND	U	0.0100	ug/L						
PFUnA Perfluoroundecanoic acid	ND	U	0.0100	ug/L						
PFDoA Perfluorododecanoic acid	ND	U	0.0100	ug/L						
PFTrDA	ND	U	0.0200	ug/L						
PFTA Perfluorotetradecanoic acid	ND	U	0.0200	ug/L						
PFBS Perfluorobutanesulfonic acid	ND	U	0.0100	ug/L						
PFPeS Perfluoropentanesulfonic acid	ND	U	0.0100	ug/L						
PFHxS Perfluorohexanesulfonic acid	ND	U	0.0100	ug/L						
PFHpS Perfluoroheptanesulfonic acid	ND	U	0.0100	ug/L						
PFOS Perfluorooctanesulfonic acid	ND	U	0.0100	ug/L						
PFNS	ND	U	0.0100	ug/L						
PFDS	ND	U	0.0100	ug/L						
PFDoS	ND	U	0.0100	ug/L						
4:2FTS 1H,1H,2H,2H-Perfluorohexane sulfonic	ND	U	0.0200	ug/L						
6:2FTS 1H,1H,2H,2H-Perfluorooctane sulfonic	ND	U	0.0200	ug/L						
8:2FTS 1H,1H,2H,2H-Perfluorodecane sulfonic	ND	U	0.0200	ug/L						
PFOSA	ND	U	0.0100	ug/L						
NMeFOSA	ND	U	0.0100	ug/L						
NEtFOSA	ND	U	0.0100	ug/L						
NMeFOSAA	ND	U	0.0100	ug/L						
NEtFOSSA	ND	U	0.0100	ug/L						
NMeFOSE	ND	U	0.0100	ug/L						
NEtFOSE	ND	U	0.0100	ug/L						
HFPO-DA Hexafuoropropylene oxide dimer acic	ND	U	0.0100	ug/L						
ADONA 4,8-Dioxa-3H-perfluorononanoic acid	ND	U	0.0100	ug/L						
9CI-PF3ONS	ND ND	U	0.0100	ug/L						
11Cl-PF3OUdS	ND ND	U	0.0100							
3:3FTCA	ND ND		0.0500	ug/L ug/L						
5:3FTCA	ND ND		0.100	ug/L						
7:3FTCA		U	0.100	ug/L						
PFEESA Perfluoro(2-ethoxyethane)sulfonic acid		U	0.0200	ug/L						
PFMPA Perfluoro-3-methoxypropanoic acid		U	0.0200	ug/L ug/L						
PFMBA Perfluoro-4-methoxybutanoic acid	ND ND		0.0200	ug/L ug/L						
NFDHA Nonafluoro-3,6-dioxaheptanoic acid	ND ND		0.0200	ug/L ug/L						
Surrogate: 13C4-PFBA EIS				ug/L	0.200			5-174		
Surrogate: 13C5-PFPeA EIS			0.114	ug/L ug/L	0.100		114	20-162		
Surrogate: 13C5-PFHxA EIS			0.0640	ug/L ug/L	0.0500		128	41-150		

Quality Control Data (Continued)

A l. d	D	01	Reporting	11-24-	Spike	Source	0/ DEC	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: BEF1013 - PFAS 537	(Continued)									
Blank (BEF1013-BLK1)				Pro	epared: 06/24	/24 15:24- Ar	nalyzed: 06/2	8/24 05:52		
Surrogate: 13C4-PFHpA EIS			0.0612	ug/L	0.0500		122	55-150		
Surrogate: 13C8-PFOA EIS			0.0618	ug/L	0.0500		124	42-150		
Surrogate: 13C9-PFNA EIS			0.0284	ug/L	0.0250		114	47-142		
Surrogate: 13C6-PFDA EIS			0.0266	ug/L	0.0250		106	<i>37-140</i>		
Surrogate: 13C7-PFUnA EIS			0.0316	ug/L	0.0250		126	10-190		
Surrogate: 13C2-PFDoA EIS			0.0270	ug/L	0.0250		108	<i>5-171</i>		
Surrogate: 13C2-PFTeDA EIS			0.0208	ug/L	0.0250		83.2	<i>5-140</i>		
Surrogate: 13C3-PFBS EIS			0.0544	ug/L	0.0466		117	39-150		
Surrogate: 13C3-PFHxS EIS			0.0562	ug/L	0.0474		119	<i>52-150</i>		
Surrogate: 13C8-PFOS EIS			0.0556	ug/L	0.0479		116	32-144		
Surrogate: 13C2-4:2FTS EIS			0.131	ug/L	0.0938		139	25-200		
Surrogate: 13C2-6:2FTS EIS			0.127	ug/L	0.0951		133	24-200		
Surrogate: 13C2-8:2FTS EIS			0.128	ug/L	0.0960		133	<i>5-200</i>		
Surrogate: 13C8-PFOSA EIS			0.0546	ug/L	0.0500		109	30-142		
Surrogate: D3-NMeFOSA EIS			0.0392	ug/L	0.0500		78.4	<i>5-167</i>		
Surrogate: D5-NEtFOSA EIS			0.0382	ug/L	0.0500		76.4	<i>5-170</i>		
Surrogate: D3-NMeFOSAA EIS			0.121	ug/L	0.100		121	45-200		
Surrogate: D5-NEtFOSAA EIS			0.121	ug/L	0.100		121	10-200		
Surrogate: D7-NMeFOSE EIS			0.464	ug/L	0.500		92.8	<i>5-150</i>		
Surrogate: D9-NEtFOSE EIS			0.500	ug/L	0.500		100	<i>5-150</i>		
Surrogate: 13C3-HFPO-DA EIS			0.236	ug/L	0.200		118	25-160		
Surrogate: 13C3-PFBA NIS			0.0962	ug/L	0.100		96.2	50-150		
Surrogate: 13C2-PFHxA NIS			0.0458	ug/L	0.0500		91.6	50-150		
Surrogate: 13C4-PFOA NIS			0.0486	ug/L	0.0500		97.2	50-150		
Surrogate: 13C5-PFNA NIS			0.0248	ug/L	0.0250		99.2	50-150		
Surrogate: 13C2-PFDA NIS			0.0240	ug/L	0.0250		96.0	50-150		
Surrogate: 1802-PFHxS NIS			0.0470	ug/L	0.0474		99.2	50-150		
Surrogate: 13C4-PFOS NIS			0.0450	ug/L	0.0479		93.9	<i>50-150</i>		

Quality Control Data (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch: BEF1013 - PFAS 537 (Contil	nued)								
.CS (BEF1013-BS1)	, , ,		Pre	epared: 06/24	4/24 15:24- Ar	nalyzed: 06/2	28/24 06:18		
PFBA Perfluorobutanoic acid	0.199	0.0400	ug/L	0.200		99.6	50-150		
PFPeA Perfluoropentanoic acid	0.103	0.0100	ug/L	0.100		103	50-150		
PFHxA Perfluorohexanoic acid	0.0456	0.0100	ug/L	0.0500		91.2	50-150		
PFHpA Perfluoroheptanoic acid	0.0464	0.0100	ug/L	0.0500		92.8	50-150		
PFOA Perfluorooctanoic acid	0.0474	0.0100	ug/L	0.0500		94.8	50-150		
PFNA Perfluorononanoic acid	0.0470	0.0100	ug/L	0.0500		94.0	50-150		
PFDA Perfluorodecanoic acid	0.0550	0.0100	ug/L	0.0500		110	50-150		
PFUnA Perfluoroundecanoic acid	0.0452	0.0100	ug/L	0.0500		90.4	50-150		
PFDoA Perfluorododecanoic acid	0.0464	0.0100	ug/L	0.0500		92.8	50-150		
PFTrDA	0.0542	0.0200	ug/L	0.0500		108	50-150		
PFTA Perfluorotetradecanoic acid	0.0604	0.0200	ug/L	0.0500		121	50-150		
PFBS Perfluorobutanesulfonic acid	0.0406	0.0100	ug/L	0.0443		91.8	50-150		
PFPeS Perfluoropentanesulfonic acid	0.0414	0.0100	ug/L	0.0470		88.1	50-150		
PFHxS Perfluorohexanesulfonic acid	0.0406	0.0100	ug/L	0.0458		88.7	50-150		
PFHpS Perfluoroheptanesulfonic acid	0.0508	0.0100	ug/L	0.0478		106	50-150		
PFOS Perfluorooctanesulfonic acid	0.0470	0.0100	ug/L	0.0465		101	50-150		
PFNS	0.0514	0.0100	ug/L	0.0480		107	50-150		
PFDS	0.0476	0.0100	ug/L	0.0483		98.7	50-150		
PFDoS	0.0384	0.0100	ug/L	0.0485		79.2	50-150		
4:2FTS 1H,1H,2H,2H-Perfluorohexane sulfonic	0.189	0.0200	ug/L	0.188		101	50-150		
6:2FTS 1H,1H,2H,2H-Perfluorooctane sulfonic	0.194	0.0200	ug/L	0.190		102	50-150		
8:2FTS 1H,1H,2H,2H-Perfluorodecane sulfonic	0.218	0.0200	ug/L	0.192		114	50-150		
PFOSA	0.0476	0.0100	ug/L	0.0500		95.2	50-150		
NMeFOSA	0.0540	0.0100	ug/L	0.0500		108	50-150		
NEtFOSA	0.0480	0.0100	ug/L	0.0500		96.0	50-150		
NMeFOSAA	0.0494	0.0100	ug/L	0.0500		98.8	50-150		
NEtFOSSA	0.0458	0.0100	ug/L	0.0500		91.6	50-150		
NMeFOSE	0.0470	0.0100	ug/L	0.0500		94.0	50-150		
NEtFOSE	0.0502	0.0100	ug/L	0.0500		100	50-150		
HFPO-DA Hexafuoropropylene oxide dimer acic	0.133	0.0100	ug/L	0.100		133	50-150		
ADONA 4,8-Dioxa-3H-perfluorononanoic acid	0.142	0.0100	ug/L	0.0945		150	50-150		
9CI-PF3ONS	0.130	0.0100	ug/L	0.0935		139	50-150		
11CI-PF3OUdS	0.120	0.0100	ug/L	0.0945		127	50-150		
3:3FTCA	0.292	0.0500	ug/L	0.200		146	50-150		
5:3FTCA	1.41	0.100	ug/L	1.00		141	50-150		
7:3FTCA	1.47	0.100	ug/L	1.00		147	50-150		
PFEESA Perfluoro(2-ethoxyethane)sulfonic acid	0.0996	0.0200	ug/L	0.0890		112	50-150		
PFMPA Perfluoro-3-methoxypropanoic acid	0.123	0.0200	ug/L	0.100		123	50-150		
PFMBA Perfluoro-4-methoxybutanoic acid	0.118	0.0200	ug/L	0.100		118	50-150		
NFDHA Nonafluoro-3,6-dioxaheptanoic acid	0.114	0.0200	ug/L	0.100		114	50-150		
Surrogate: 13C4-PFBA EIS		0.248	ug/L	0.200		124	5-174		
Surrogate: 13C5-PFPeA EIS		0.117	ug/L	0.100		117	20-162		
Surrogate: 13C5-PFHxA EIS		0.0668	ug/L	0.0500		134	41-150		
Surrogate: 13C4-PFHpA EIS		0.0686 0.0628	ug/L ug/L	0.0500		137	55-150		
Surrogate: 13C8-PFOA EIS				0.0500		<i>126</i>	<i>42-150</i>		

Quality Control Data (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
D-4-1- DEE(0/2 DE(0/2)	(0									
Batch: BEF1013 - PFAS 537	(Continuea)			D.		/24.15.24 A	h d- 0 <i>C (</i>	20/24 06:40		
LCS (BEF1013-BS1)				Pr	epared: 06/24	/24 15:24- At	nalyzed: 06/2	28/24 06:18		
Surrogate: 13C6-PFDA EIS			0.0232	ug/L	0.0250		92.8	<i>37-140</i>		
Surrogate: 13C7-PFUnA EIS			0.0320	ug/L	0.0250		128	10-190		
Surrogate: 13C2-PFDoA EIS			0.0282	ug/L	0.0250		113	<i>5-171</i>		
Surrogate: 13C2-PFTeDA EIS			0.0186	ug/L	0.0250		74.2	<i>5-140</i>		
Surrogate: 13C3-PFBS EIS			0.0570	ug/L	0.0466		122	<i>39-150</i>		
Surrogate: 13C3-PFHxS EIS			0.0582	ug/L	0.0474		123	<i>52-150</i>		
Surrogate: 13C8-PFOS EIS			0.0608	ug/L	0.0479		127	32-144		
Surrogate: 13C2-4:2FTS EIS			0.128	ug/L	0.0938		136	25-200		
Surrogate: 13C2-6:2FTS EIS			0.129	ug/L	0.0951		136	24-200		
Surrogate: 13C2-8:2FTS EIS			0.132	ug/L	0.0960		138	<i>5-200</i>		
Surrogate: 13C8-PFOSA EIS			0.0538	ug/L	0.0500		108	30-142		
Surrogate: D3-NMeFOSA EIS			0.0378	ug/L	0.0500		75.6	<i>5-167</i>		
Surrogate: D5-NEtFOSA EIS			0.0376	ug/L	0.0500		<i>75.2</i>	<i>5-170</i>		
Surrogate: D3-NMeFOSAA EIS			0.130	ug/L	0.100		130	45-200		
Surrogate: D5-NEtFOSAA EIS			0.129	ug/L	0.100		129	10-200		
Surrogate: D7-NMeFOSE EIS			0.540	ug/L	0.500		108	<i>5-150</i>		
Surrogate: D9-NEtFOSE EIS			0.518	ug/L	0.500		104	<i>5-150</i>		
Surrogate: 13C3-HFPO-DA EIS			0.258	ug/L	0.200		129	25-160		
Surrogate: 13C3-PFBA NIS			0.0826	ug/L	0.100		82.6	<i>50-150</i>		
Surrogate: 13C2-PFHxA NIS			0.0396	ug/L	0.0500		79.2	50-150		
Surrogate: 13C4-PFOA NIS			0.0448	ug/L	0.0500		89.6	50-150		
Surrogate: 13C5-PFNA NIS			0.0210	ug/L	0.0250		84.0	50-150		
Surrogate: 13C2-PFDA NIS			0.0252	ug/L	0.0250		101	50-150		
Surrogate: 1802-PFHxS NIS			0.0412	ug/L	0.0474		86.9	50-150		
Surrogate: 13C4-PFOS NIS			0.0402	ug/L	0.0479		83.9	50-150		

City: POPTLAND

Address:

USO NE HOWADAY STREET, ST. 900

State: 0 PC

97232

GSI WATER

SOLVTIONS

Phone:

541-981-

0172

Email Address(es):

hall @ gsiws. com,

Chain of Custody Record

504 E Sprague St 1282 Alturas D

MEF0657

Chedonide do mos court 1 20 do do do mos com	The state of the come where the state of the come	J. 井木公		1232	Purchase Order #:	1.900 00464.020.	Project Name & #: SANTIAM CANYON	NS 57.7	Project Mailager 40 17 47 CRIPS
Cont	٠,	Other*			N.C.				
	1000	have prior approval	*All rush order requests must	Email			0.000	Due: 07/08/24	

	Shipped Via: Preservative:	li II	06 20	Company (25)	, l	non	nature Natury Minum
6	Temperature (°C):_					H	
15	Ice/Ice Packs Present?						
	Cooler?						
:5	No VOC Head Space?					1	
	Containers Sealed?					1	
ë,	Labels & Chains Agree?					1	
	Received Intact?					1	
on C	Inspection Checklist						
					X	W	
					×	W	1
					×	B	
					×	e	
					EPA	# of C	Matrix
					1633	Containers ble Volume	
						Preservative:	
struc	Note Special instructions/comments		těd	List Analyses Requested	List /	•	

2MI MW 2 - 062024 106/20/24

H2000-H-MM

N2/02/91

MM-35-06204 06/10/24

E lab

Sample Identification

Sampling Date/Time

M2 MW3-06202406/20/24

Samples submitted to Anatek Labs may be subcontacted to other accredited labs if necessary. This message serves as notice of this possibility. Subcontracted analyses will be clearly noted on the analytical report. Received by

Date & Time: Inspected By:

Relinquished by Received by Relinquished by Received by Relinquished by

Printed Name さると

MODERAN

Anatek Labs, Inc.

Sample Receipt and Preservation Form

Client Name: GSI Water Solutions
TAT: Normal RUSH: days
Samples Received From: FedEx UPS USPS Client Courier Other:
Custody Seal on Cooler/Box: Yes No Custody Seals Intact: Yes No N/A
Number of Coolers/Boxes: Type of Ice: Wet Ice Ice Packs Dry Ice None
Packing Material: Bubble Wrap Bags Foam/Peanuts Paper None Other:
Cooler Temp As Read (°C): 2.5 Cooler Temp Corrected (°C): Thermometer Used: IR-4 IR-5
Comments:
Samples Received Intact? Yes No N/A
Chain of Custody Present/Complete? Yes No N/A
Labels and Chains Agree? Yes No N/A
Samples Received Within Hold Time? Yes No N/A
Correct Containers Received? Yes No N/A
Anatek Bottles Used? Yes No Unknown
Total Number of Sample Bottles Received: / Z
Initial pH: pH Paper ID:
Samples Properly Preserved? Yes No N/A <2 or
If No, record preservation and pH-after details
VOC Vials Free of Headspace (<6mm)? Yes No N/A
VOC Trip Blanks Present? Yes No N/A
Record preservatives (and lot numbers, if known) for containers below:
PSOO (2), P125 -1633 × 4
1300 (17) 17125 1803
± 1 × 2
Notes, comments, etc. (also use this space if contacting the client - record names and date/time)
Notes, comments, etc. (also use this space if contacting the client - record flames and date/time)
2
Received/Inspected By: Date/Time:
Form F19.01 - Eff 1 Dec 2022 Page 1 of 1

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, April 17, 2024 Jesse Hall GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209

RE: A4D1160 - Santiam - 464.027

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4D1160, which was received by the laboratory on 4/11/2024 at 3:41:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 4.5 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
464.2024.04.11-01	A4D1160-01	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-02	A4D1160-02	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-03	A4D1160-03	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-04	A4D1160-04	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-05	A4D1160-05	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-06	A4D1160-06	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-07	A4D1160-07	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-08	A4D1160-08	Water	04/11/24 12:00	04/11/24 15:41
464.2024.04.11-09	A4D1160-09	Water	04/11/24 12:00	04/11/24 15:41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 464.027
Project Manager: Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

ANALYTICAL SAMPLE RESULTS

		Anions I	by Ion Chrom	atography				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
464.2024.04.11-01 (A4D1160-01)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	1.33		0.250	mg/L	1	04/11/24 21:56	EPA 300.0	
464.2024.04.11-02 (A4D1160-02)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	1.18		0.250	mg/L	1	04/11/24 23:01	EPA 300.0	
464.2024.04.11-03 (A4D1160-03)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	7.57		0.250	mg/L	1	04/12/24 02:15	EPA 300.0	
464.2024.04.11-04 (A4D1160-04)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	7.92		0.250	mg/L	1	04/12/24 02:36	EPA 300.0	
464.2024.04.11-05 (A4D1160-05)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	7.58		0.250	mg/L	1	04/12/24 02:58	EPA 300.0	
464.2024.04.11-06 (A4D1160-06)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	5.33		0.250	mg/L	1	04/12/24 03:19	EPA 300.0	
464.2024.04.11-07 (A4D1160-07)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	1.63		0.250	mg/L	1	04/12/24 03:41	EPA 300.0	
464.2024.04.11-08 (A4D1160-08)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	1.57		0.250	mg/L	1	04/12/24 04:02	EPA 300.0	
464.2024.04.11-09 (A4D1160-09)				Matrix: Wa	ater			
Batch: 24D0471								
Nitrate-Nitrogen	1.32		0.250	mg/L	1	04/12/24 05:07	EPA 300.0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 464.027
Project Manager: Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by lon	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0471 - Method Prep:	Aq						Wa	ter				
Blank (24D0471-BLK1)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 20:30					
EPA 300.0												
Nitrate-Nitrogen	ND		0.250	mg/L	1							
LCS (24D0471-BS1)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 20:51					
EPA 300.0												
Nitrate-Nitrogen	2.00		0.250	mg/L	1	2.00		100	90-110%			
Duplicate (24D0471-DUP1)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 22:18					
QC Source Sample: 464.2024.04.11	-01 (A4D11	160-01)										
EPA 300.0												
Nitrate-Nitrogen	1.32		0.250	mg/L	1		1.33			0.2	3%	
Duplicate (24D0471-DUP2)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 23:22					
OC Source Sample: 464.2024.04.11	-02 (A4D11	160-02)										
EPA 300.0												
Nitrate-Nitrogen	1.18		0.250	mg/L	1		1.18			0.3	3%	
Matrix Spike (24D0471-MS1)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 22:39					
QC Source Sample: 464.2024.04.11	-01 (A4D11	<u>160-01)</u>										
EPA 300.0												
Nitrate-Nitrogen	3.84		0.312	mg/L	1	2.50	1.33	101	87-112%			
Matrix Spike (24D0471-MS2)			Prepared	: 04/11/24	17:01 Anal	yzed: 04/11/	/24 23:44					
QC Source Sample: 464.2024.04.11	-02 (A4D11	160-02)										
EPA 300.0												
Nitrate-Nitrogen	3.70		0.312	mg/L	1	2.50	1.18	101	87-112%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 4 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:464.027Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

SAMPLE PREPARATION INFORMATION

		P	nions by Ion Chroma	atography			
Prep: Method Prep: A	<u>\q</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0471							
A4D1160-01	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-02	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-03	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-04	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-05	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-06	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-07	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-08	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00
A4D1160-09	Water	EPA 300.0	04/11/24 12:00	04/11/24 17:01	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1160 - 04 17 24 2005

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

There are No Qualifiers on Sample or QC Data for this report

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GSI Water Solutions
 Project:
 Santiam

 55 SW Yamhill St, Ste 300
 Project Number:
 464.027
 Report ID:

 Portland, OR 97209
 Project Manager:
 Jesse Hall
 A4D1160 - 04 17 24 2005

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manhera

Page 7 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1160 - 04 17 24 2005

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Benzofluoranthene Isomer Reporting:

Due to coelution on the analytical column, the Benzo(b)fluoranthene results represent the concentration of both Benzo(b)fluoranthene and Benzo(j) fluoranthene. Calibration is based on the response of Benzo(b)fluoranthene, and the results represent the combined Benzo(b+j)fluoranthene(s).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:464.027Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1160 - 04 17 24 2005

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 464.027
Project Manager: Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

ic ic																					
Company: Cr51	Æ	Project Mgr.	1	J. Hall	=			E	Project Name:		S	Santiem	\$	0	110		Project #:	464.02	025		
Address: 650 NE Holloday	5.90	a	Š		Phone	Ü	Phone: 541-981-0172	0		Email	Email: , hall 3	12		Ś	gsiws.com	Z	PO #				
Sampled by: J. Hall, J.	5,0							100			7	le ma	S. 5.) ¥	ANALYSIS REQUEST	.					
Site Location:											tel				ъp'	Crb.					
State O(2			ЕВВ				- JU			S)	Full L				1, Be, 1, Fe, Mo, Ni,						
County Marken					xG-I					HAY N					As, Ba Co, Ci Ma, I						ubje
SAMPLE ID	DATE	TIME	MATRIX # OF CO	MALLE	MALBE	NWTPE	8260 RT	EH 0978	OA 0978	IS 0478	19S 0728	2808 2 1808	8081 Pe	Priority	A Sh,	TCLP I					neS bloB
ō	늗	+-	┼	_			-	-			1	T	+	-	X .						
	-	_	-	_										-		ļ					
-63						/	-	<u> </u>				<u> </u>							y v		
50-							+	1													
50-)	<u>} </u>)					(
90-							7	4			Z	J									
404						7		_		2			H								
80.0						-	-														
bo- ^														\dashv							
On 4. 1 Tr. A. I Trans (TAR). 10 December			_	-				\dashv		à	COBCIAL INCIDITIONS		<u>E</u>	<u> </u> ġ		\dashv			\dashv		
Signogard Tentr	T Dev	(141)	7 Day	se Lays	, l					i *			₹ °	£ 1	* Sampled thousand OVC 0100	Š	90.0	١			
TAT Requested (circle)	1 174	•	i i	•	ì					<u> </u>	3	7	3		7						
	5 Day	Star	Standard		Other:																
	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 L	AYS																		
ignature.	Date: 4/11 2 U	Z Z	RECEIVED Signature:	# &		Seel.	Date:	# 4(11/24	2	RELINQ Signature:	RELINQUISHED BY: Signature:	0311	ä		Date:		RECEIVED BY: Signature:	BY:	Date:		
	Time:	Æ	Printed Name)	200		Time:			P. Spirit	Printed Name				Time:		Printed Name	6	Time:	.,	
(d (a,n	17.0	ŭ	Company:	This are the pany.	3 3		T	S.	_	Company	any:						Company:				
しては、よこして ノイン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7	_	Ð	1000	4	_															

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 464.027
Project Manager: Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

Philip Nerenberg

AUDINGO

Subject:

FW: Santiam Canyon Geochemical Modeling

- General parameters
 - Lab pH, lab specific conductivity, TDS, alkalinity (total, bicarbonate, carbonate, hydroxide)
 - Dissolved or total metals
 - o Antimony, Silver, Thallium
 - Consistent with current practices + major cations: Sb, Al, As, Ba, Be, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Hg, Na, Se, Ag, Tl, Zn
 - Dissolved or total metals in addition to current suite that would be great diagnostic indicators, if possible to add: B, Sr, Li, Mo, Ni, P as PO4, Pb, U, V
- Anions
- o Bromide, chloride, fluoride, sulfate
- Nitrogen species
- Nitrate, nitrite, ammonia
- Cyanide
- Organics (consistent with current practices) VOCs and SVOCs

If possible, a similar analytical suite for both the groundwater and wastewater samples will facilitate mixing modeling for the two solutions. Feel free to reach out with questions or concerns and let us know if this is not what you are looking for. We'll be back in touch with the solids sampling recommendations soon.

Thanks!

Shannon Zahuranec, PG Senior Geochemist C: 859-310-2174

DISCLAIMER: The information in this email, including any attachments, is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you are not the intended recipient, or believe you have received this communication in error, please do not print, copy, or otherwise use or transmit the information. Please notify the sender by return email immediately and delete this message.

Samples coming today from GSI Will say see email on chain Anissa is setting up project

1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 464.027
Project Manager: Jesse Hall

Report ID: A4D1160 - 04 17 24 2005

Client: GSI	
Client: CIUL	Element WO#: A4 D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Project/Project #:	pantiam PIT #464-027
Delivery Info:	
Date/time received: 41	11tm @ 1541 By: ALK
Delivered by: ApexClie	nt XESS FedEx UPS Radio Morgan SDS Evergreen Other
From USDA Regulated Or	rigin? Yes No K
Cooler Inspection Date	te/time inspected: 411114 @ 1541 By: AGL
Chain of Custody included	? Yes X No
Signed/dated by client?	Yes <u> </u>
Contains USDA Reg. Soils	s? Yes No _X Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	4.5
Custody seals? (Y/N)	N
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	N
I (C 1/D 1/O/I)	
ice type: (Gel/Real/Other)	Keal
Condition (In/Out):	Real
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out o Out of temperature sample	<u> </u>
Condition (In/Out): Cooler out of temp? (Y/N) Green dots applied to out of Out of temperature sample Sample Inspection: Date	Possible reason why: of temperature samples? Yes No s form initiated? Yes No
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: All samples intact? Yes	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14/ @ ((4) (a By: M)
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: All samples intact? Yes	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: All samples intact? Yes X Bottle labels/COCs agree?	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14 @ //e/le By: No Comments: Yes X No X Comments: Col lists 12 conts. Per sample, but w
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of temperature sample Sample Inspection: Date All samples intact? Yes X Bottle labels/COCs agree? CoC/container discrepanci Containers/volumes received	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14/ @ ((4) (a By: M)
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: Date All samples intact? Yes X Bottle labels/COCs agree? COC/container discrepance Containers/volumes received	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14 @ 1/e/10 By: No Comments: Yes X No X Comments: Col lists 12 conts. Per sample, but we list form initiated? Yes No Comments: Imited volume
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: Date All samples intact? Yes X Bottle labels/COCs agree? COC/container discrepance Containers/volumes received	Possible reason why: Possible reason why: If temperature samples? Yes No s form initiated? Yes No No Comments: Yes No X Comments: Col lists 12 conts. Per sample, but we les form initiated? Yes No
Condition (In/Out): Cooler out of temp? (YN) Green dots applied to out of Out of temperature sample Sample Inspection: Date All samples intact? Yes X Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive ON All Samples. Do VOA vials have visible Comments	Possible reason why: of temperature samples? Yes No s form initiated? Yes No e/time inspected: 4/11/14 @ 1/e/10 By: No Comments: Yes X No X Comments: Col lists 12 conts. Per sample, but we list form initiated? Yes No Comments: Imited volume

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

Page 12 of 12

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, April 29, 2024
Jesse Hall
GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

RE: A4D1382 - Santiam - 469

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4D1382, which was received by the laboratory on 4/18/2024 at 3:16:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 0.7 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
469-20240418-1	A4D1382-01	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-2	A4D1382-02	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-3	A4D1382-03	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-4	A4D1382-04	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-5	A4D1382-05	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-6	A4D1382-06	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-7	A4D1382-07	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-8	A4D1382-08	Water	04/18/24 13:00	04/18/24 15:16
469-20240418-9	A4D1382-09	Water	04/18/24 13:00	04/18/24 15:16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL SAMPLE RESULTS

		De	mand Param	eters				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
469-20240418-1 (A4D1382-01)				Matrix: W	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-2 (A4D1382-02)				Matrix: Wa	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-3 (A4D1382-03)				Matrix: W	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-4 (A4D1382-04)				Matrix: Wa	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-5 (A4D1382-05)				Matrix: W	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-6 (A4D1382-06)				Matrix: Wa	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-7 (A4D1382-07)				Matrix: Wa	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	ND		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-8 (A4D1382-08)				Matrix: Wa	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	3.21		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	
469-20240418-9 (A4D1382-09)				Matrix: W	ater			
Batch: 24D0748								
Biochemical Oxygen Demand	2.93		1.88	mg/L	1	04/24/24 14:25	SM 5210 B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	termination	s			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
469-20240418-1 (A4D1382-01)				Matrix: W	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	89.0		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	ND		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	TSS
469-20240418-2 (A4D1382-02)				Matrix: W	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	90.0		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	ND		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	TSS
469-20240418-3 (A4D1382-03)				Matrix: W	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	160		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	ND		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	TSS
469-20240418-4 (A4D1382-04)				Matrix: W	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	166		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	41.0		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	
469-20240418-5 (A4D1382-05)				Matrix: W	ater			
Batch: 24D0720			_					
Total Dissolved Solids Batch: 24D0904	165		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	ND		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	TSS
469-20240418-6 (A4D1382-06)				Matrix: W	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	148		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	162		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	
469-20240418-7 (A4D1382-07)				Matrix: W	ater			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	erminations	5			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
469-20240418-7 (A4D1382-07)				Matrix: Wa	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	95.0		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	ND		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	TSS
469-20240418-8 (A4D1382-08)				Matrix: Wa	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	111		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	582		10.0	mg/L	1	04/29/24 09:25	SM 2540 D	
469-20240418-9 (A4D1382-09)				Matrix: Wa	ater			
Batch: 24D0720								
Total Dissolved Solids Batch: 24D0904	145		5.00	mg/L	1	04/18/24 18:41	SM 2540 C	
Total Suspended Solids	50.0		5.00	mg/L	1	04/29/24 09:25	SM 2540 D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	s			
A 1.	Sample	Detection	Reporting	TT 1.	D.1:	Date	M 4 10 C	N7 -
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
469-20240418-1 (A4D1382-01)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.7			pH Units	1	04/18/24 17:00	SM 4500-H+ B	H-12
pH Temperature (deg C)	19.7			pH Units	1	04/18/24 17:00	SM 4500-H+ B	H-12
469-20240418-2 (A4D1382-02)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.6			pH Units	1	04/18/24 17:07	SM 4500-H+ B	H-12
pH Temperature (deg C)	19.4			pH Units	1	04/18/24 17:07	SM 4500-H+ B	H-12
469-20240418-3 (A4D1382-03)				Matrix: Wa	ter			
Batch: 24D0692	<u> </u>							· ·
рН	6.0			pH Units	1	04/18/24 17:11	SM 4500-H+ B	H-12
pH Temperature (deg C)	17.6			pH Units	1	04/18/24 17:11	SM 4500-H+ B	H-12
469-20240418-4 (A4D1382-04)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.4			pH Units	1	04/18/24 17:16	SM 4500-H+ B	H-12
pH Temperature (deg C)	17.9			pH Units	1	04/18/24 17:16	SM 4500-H+ B	H-12
469-20240418-5 (A4D1382-05)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.2			pH Units	1	04/18/24 17:20	SM 4500-H+ B	H-12
pH Temperature (deg C)	18.0			pH Units	1	04/18/24 17:20	SM 4500-H+ B	H-12
469-20240418-6 (A4D1382-06)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.4			pH Units	1	04/18/24 17:24	SM 4500-H+ B	H-12
pH Temperature (deg C)	18.2			pH Units	1	04/18/24 17:24	SM 4500-H+ B	H-12
469-20240418-7 (A4D1382-07)				Matrix: Wa	ter			
Batch: 24D0692								
рН	6.3			pH Units	1	04/18/24 17:29	SM 4500-H+ B	H-12
pH Temperature (deg C)	17.9			pH Units	1	04/18/24 17:29	SM 4500-H+ B	H-12
169-20240418-8 (A4D1382-08)				Matrix: Wa	ter			
D-4-h: 04D0000								

Batch: 24D0692

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	S			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
469-20240418-8 (A4D1382-08)				Matrix: Wa	ter			
рН	6.7			pH Units	1	04/18/24 17:35	SM 4500-H+ B	H-12
pH Temperature (deg C)	18.0			pH Units	1	04/18/24 17:35	SM 4500-H+ B	H-12
469-20240418-9 (A4D1382-09)				Matrix: Wa	ter			
Batch: 24D0692								
pН	7.2			pH Units	1	04/18/24 17:39	SM 4500-H+ B	H-12
pH Temperature (deg C)	16.8			pH Units	1	04/18/24 17:39	SM 4500-H+ B	H-12

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 7 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

QUALITY CONTROL (QC) SAMPLE RESULTS

				Demand	l Paramet	ters						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0748 - Method Prep:	Aq	·	·				Wat	ter				
Blank (24D0748-BLK1)			Prepared	: 04/19/24	13:22 Ana	lyzed: 04/24	/24 14:25					
SM 5210 B Biochemical Oxygen Demand	ND		0.200	mg/L	1							
Duplicate (24D0748-DUP1)			Prepared	: 04/19/24	13:22 Ana	lyzed: 04/24	/24 14:25					
QC Source Sample: Non-SDG (A4)	<u>01361-01)</u>											
Biochemical Oxygen Demand	7.95		0.940	mg/L	1		9.21			15	20%	
Duplicate (24D0748-DUP2)			Prepared	: 04/19/24	13:22 Ana	lyzed: 04/24	/24 14:25					
QC Source Sample: Non-SDG (A4)	01362-01)											
Biochemical Oxygen Demand	2.21		0.940	mg/L	1		2.53			14	20%	
Reference (24D0748-SRM1)			Prepared	: 04/19/24	13:22 Ana	lyzed: 04/24	/24 14:25					
SM 5210 B												
Biochemical Oxygen Demand	211			mg/L	1	198		106	85-115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 8 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	and Mois	ture Dete	rmination	ıs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0720 - Total Diss	olved Solids	- 2022					Wa	ter				
Blank (24D0720-BLK1)			Prepared	: 04/18/24	18:41 Ana	lyzed: 04/18	3/24 18:41					
SM 2540 C Total Dissolved Solids	ND		5.00	mg/L	1							
Duplicate (24D0720-DUP1)	1		Prepared	: 04/18/24	18:41 Ana	lyzed: 04/18	3/24 18:41					
QC Source Sample: Non-SDG	(A4D1189-01)											
Total Dissolved Solids	583		6.67	mg/L	1		576			1.16	10%	
Duplicate (24D0720-DUP2)	ı		Prepared	: 04/18/24	18:41 Ana	lyzed: 04/18	3/24 18:41					
QC Source Sample: Non-SDG	(A4D1334-01)											
Total Dissolved Solids	316		5.00	mg/L	1		318			0.631	10%	
Reference (24D0720-SRM1)		Prepared	: 04/18/24	18:41 Ana	lyzed: 04/18	3/24 18:41					
SM 2540 C	2510			Ø.	,	2470		102	02 1100/			
Total Dissolved Solids	2510			mg/L	1	2470		102	82-118%			
Batch 24D0904 - Total Sus	pended Solid	s - 2022					Wa	ter				
Blank (24D0904-BLK1)			Prepared	: 04/24/24	13:09 Ana	lyzed: 04/29	9/24 09:25					
SM 2540 D												
Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (24D0904-DUP1)	1		Prepared	: 04/24/24	13:09 Ana	lyzed: 04/29	0/24 09:25					
QC Source Sample: Non-SDG	(A4D1373-05)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	T
Duplicate (24D0904-DUP2)	ı		Prepared	: 04/24/24	13:09 Ana	lyzed: 04/29	0/24 09:25					
OC Source Sample: Non-SDG	(A4D1387-01)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	T
Reference (24D0904-SRM1)		Prepared	: 04/24/24	13:09 Ana	lyzed: 04/29	0/24 09:25					
SM 2540 D Total Suspended Solids	027			ma/I	1	275		107	Q5 1150/			
Reference (24D0904-SRM1 SM 2540 D Total Suspended Solids	937		Prepared	mg/L	13:09 Ana	lyzed: 04/29 875	0/24 09:25	107	85-115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conver	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0692 - Method Prep	: Aq						Wa	ter				
Duplicate (24D0692-DUP1)			Prepared	: 04/18/24 0	9:40 Ana	lyzed: 04/18	/24 17:13					
QC Source Sample: 469-20240418	-3 (A4D138	32-03)										
SM 4500-H+ B												
pH	6.1			pH Units	1		6.0			0.2	2%	H-1
pH Temperature (deg C)	17.6			pH Units	1		17.6			0	30%	H-1
Reference (24D0692-SRM1)			Prepared	: 04/18/24 0	9:40 Ana	lyzed: 04/18	/24 09:56					
SM 4500-H+ B												
pH	6.0			pH Units	1	6.00		100 9	8.33-101.3	3%		
pH Temperature (deg C)	20.6			pH Units	1	20.0		103	50-200%			
Reference (24D0692-SRM2)			Prepared	: 04/18/24 0	9:40 Ana	lyzed: 04/18	/24 09:57					
SM 4500-H+ B												
pH	8.0			pH Units	1	8.00		100	99-101%			
pH Temperature (deg C)	20.5			pH Units	1	20.0		102	50-200%			
Reference (24D0692-SRM3)			Prepared	: 04/18/24 0	9:40 Ana	lyzed: 04/18	/24 16:50					
SM 4500-H+ B												
pH	6.0			pH Units	1	6.00		101 9	8.33-101.3	3%		
pH Temperature (deg C)	20.8			pH Units	1	20.0		104	50-200%			
Reference (24D0692-SRM4)			Prepared	: 04/18/24 0	9:40 Ana	lyzed: 04/18	/24 17:41					
SM 4500-H+ B												
pH	8.0			pH Units	1	8.00		100	99-101%			
pH Temperature (deg C)	20.6			pH Units	1	20.0		103	50-200%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

SAMPLE PREPARATION INFORMATION

			Demand Parame	ters			
Prep: Method Prep: A	<u>va</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0748							
A4D1382-01	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-02	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-03	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-04	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-05	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-06	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-07	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-08	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA
A4D1382-09	Water	SM 5210 B	04/18/24 13:00	04/19/24 15:43	150mL/300mL	150mL/300mL	NA

Prep: Total Dissolve	ed Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0720							
A4D1382-01	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-02	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-03	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-04	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-05	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-06	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-07	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-08	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA
A4D1382-09	Water	SM 2540 C	04/18/24 13:00	04/18/24 18:41			NA

Prep: Total Suspende	d Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0904							
A4D1382-01	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-02	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-03	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-04	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-05	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-06	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-07	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA
A4D1382-08	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

SAMPLE PREPARATION INFORMATION

		So	lid and Moisture Dete	erminations			
Prep: Total Suspen	ded Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4D1382-09	Water	SM 2540 D	04/18/24 13:00	04/24/24 13:09			NA

		Con	ventional Chemistry	Parameters			
Prep: Method Prep:	Aq				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0692							
A4D1382-01	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-02	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-03	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-04	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-05	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-06	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-07	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-08	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA
A4D1382-09	Water	SM 4500-H+ B	04/18/24 13:00	04/18/24 16:18	20mL/20mL	20mL/20mL	NA

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 12 of 18

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

H-12 Sample Analysis or Filtration was performed >15 minutes after sample collection. Consult regulator or permit manager to determine the usability of data for intended use.

TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

X See Case Narrative.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Report ID:Portland, OR 97209Project Manager:Jesse HallA4D1382 - 04 29 24 1805

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manhera

Page 14 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water SolutionsProject:Santiam55 SW Yamhill St, Ste 300Project Number:469Portland, OR 97209Project Manager:Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 469

Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

Sample W. T. Hall Long A. S. S. Company C. S. I. L. Co. C. S. C.	6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323	7223 Ph: 5	03-718-	2323) T) t			!				i	T					Ţ	
SAME THE LOOP STATES OF THE ST	company: CSI Wake Solv		Project M.) J	Sse	5			Proje	ct Nam	رگ ا	I'AF	3	8	9 roy	1	Proj	ect #:	3	7			1 1
Sing Office of the Control of the Co	Address: 650 NE Haladay	- 1	X	300		Phone	34	181	1017	プ田田	cail:	N N	@			٤	PO	34-					1
SMARTER D		(a,y						No.						, W	LYSIS REQI	HEST.							
1 20 20 20 20 20 20 20	Site Location:										15				K' 5p' 5q'	dTO							_
SAMPLE D SAMPLE	State_OL			IEES				OC*	\$0			***************************************			. Be.		(6)						
SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ARE HELD FOR 30 DAYS SAMPLES ARE	County (10)					x(I-)			юл 9				ticides		BH .2/) erma	(5		7	bje	
-2024(CH3_11+- 4 6 3 \times 2 \times 4 \times	SAMPLE ID	atac	EIVII	te ut occurr		HALMN			RH 0928				8081 Pes		7 45 1		M TO I	108	SST		44	ms2 blo	
1	-2074(418-	00	8	+	+		+			-	-	-			<u>v </u>		\perp]-	+	١.		н	_
1	7.5	_	-				-	-		ļ		ļ	-	1			ja P	_					+
- 4 1 - 2	+ 4-													<u> </u>			-		-			ļ	-
1	-4-						-				├	ļ							_				-
1 Day 2 Day 3 Day 2 Day 3 Day 3 Day 2 Day 3 Day 3 Day 2 Day 3 Day 4 Day 5 Da	-8-+																	-					1
A	7-9-																	_	<u> </u>				
A	+																						
1 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day 2 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day 3 Day 2 Day 3 Day 3	- 8																						
Standard Turn Around Time (TAT) = 10 Business Days Standard Turn Around Time (TAT) = 10 Business Days Standard Ottler: 1 Day	+0-																						-
1 Day 2 Day 3 Day 3 Day 3 Day 3 Day 4 Date: L 1 Day 2 Day 3 Day 3 Day 4 Date: L 1 Day 2 Day 3 Day 4 Date: L 1 Day 2 Day 3 Day 4 Date: L 1 Day 2 Day 4 Date: L 2 Day 4 Date: L 2 Day 4 Date: L 3 Day 4 Day	4		_											Š.							>		
1 Day 2 Day 3 Day 3 Day 3 Day 3 Day 5 Land and 5 Land	Standard Tur	Around Tim	c (TAT) =	- 10 Busine	ss Days				1	SI	ECIA	INST	RUCT	ONS			-						1
SAMPLES ARE HELD FOR 30 DAYS SAMPLES ARE HELD FOR 30 DAYS Date: Signature:	£	1 Day	7	Day	60	Day																	
UISHED BY: Date: RECEIVED BY: Date: Signature: Date: L/B/LN Signature: Date: L/B/LN Signature: Date: Princh Name: Time: Time: Company:	IAI Kequested (circle)	5 Day	Sta	ndard	ō	er:																	
USHED BY: Date: Signature: Signature: Date: L/B/LN Signature:		S ARE HELD	FOR 30	DAYS					1.	Т													
ms: Time: Actual Name: Time: Printed Name: Time: Printed Name: Time: Printed Name: Printed Name: Printed Name: No. (Company: No	UISHED BY:	Date:	18 7 X 25	ECEIVED grature:	ž V		Dat	1	12		SLINQI nature:	JISHEI	BY:		Date:		REC	EIVED fure:	BY:		Date:		1
WS Company:	[A (a,y	7 Time:		Eri	3		Į.	1 12	2	E	nted Na	ije:			Тіте:		Pirit	ed Name			Time:		1
	Company: GSI WS		0	ompany:	- ×	746	2			<u>క</u>	mpany.			9			S	pany:					1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 18

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Santiam
Project Number: 469
Project Manager: Jesse Hall

Report ID: A4D1382 - 04 29 24 1805

Client: 651 Water Solutions Element WO#: A4 D1382	
	<u>L</u>
Project/Project #: Santiam Canyon PIT 469 469	_
Dalivary Info:	ylam
Date/time received: 4/18/24 @ 1516 By: EST	
Delivered by: Apex Client ESS FedEx UPS Radio Morgan SDS Evergreen	Other
From USDA Regulated Origin? Yes No	
Cooler Inspection Date/time inspected: 4/18/24 @ 1520 By: £57	
Chain of Custody included? Yes No No	
Signed/dated by client? Yes No	
Contains USDA Reg. Soils? Yes No Unsure (email RegSoils)	
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6	Cooler #7
Temperature (°C)	
Custody seals? (Y/N)	
Received on ice? (Y/N)	
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other) Peal	
Condition (In/Out):	
Condition (In/Out): Cooler out of temp? (V/N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 413/24@ 16:08 By:	
Condition (In/Out): Cooler out of temp? (V/N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 413124@ 16:08 By: All samples intact? Yes X No Comments:	
Condition (In/Out): Cooler out of temp? (N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 413/24@ 16:08 By: All samples intact? Yes X No Comments:	
Condition (In/Out): Cooler out of temp? (V/N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 413124@ 16:08 By: All samples intact? Yes X No Comments:	
Condition (In/Out): Cooler out of temp? (V/N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 415124@ 16:08 By: All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes No Comments:	
Condition (In/Out): Cooler out of temp? (VN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 4/13/14@ 16:08 By: WM All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments: 2 X 250	0ml
Condition (In/Out): Cooler out of temp? (VN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 4/13/14@ 16:08 By: WM All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments: 2 X 250	0ml
Condition (In/Out): Cooler out of temp? (VN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 4/13/14@ 16:08 By: All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes No Comments: COC/container discrepancies form initiated? Yes No	0ml
Condition (In/Out): Cooler out of temp? (V/N) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 415124@ 16:08 By: All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes X No Comments: COC/container discrepancies form initiated? Yes No Comments: Containers/volumes received appropriate for analysis? Yes X No Comments: 2x 250 provided for Boo TS, TDS pH on all Samples - Limited volumes.	0ml
Condition (In/Out): Cooler out of temp? (VN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 4/13/24@ 14:08 By: AM All samples intact? Yes X No Comments: Bottle labels/COCs agree? Yes X No Comments: COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes X No Comments: 2x 250 Overvided for Bob TGS TDS pH on all Samples - limited volumed to the property of the containers of the property of the containers of	onl autor ul ulu

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Portland, OR *Microbiology/Chemistry (c)* 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: GSI Water Solutions, Inc.

ANALYTICAL

55 SW Yamhill Street Ste 300

Portland, OR 97204

System Name: System ID Number: Source Number: Multiple Sources: Sample Type:

Sample Purpose: Investigative or Other

Sample Location: GM1MW1

County:

Reference Number: 23-15512

Project: Santiam Canyon 0464.020.001 - (

Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23

Report Date: 7/12/23

Sampled By: Mellisa Girbach

Sampler Phone:

Approved by: anp,bj,mcs,pap,pdk,1

Authorized by:

Thanh B Phan Lab Manager, Portland

ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
CORROSIVITY									
HYDROGEN ION (pH)	6.15 H5	pH Units			klp	4072	SM4500-H+ B	06/08/23 15:58	Temp (C):
ALKALINITY	42.5	mg CaCO3/	2		klp	4072	SM2320 B	06/08/23	22.1
CORROSIVITY	-2.92	SI			bj	4072	SM203	06/23/23	
CARRONATE	ND	maCaCO3/I	2		kln	4072	SM2320 B	06/09/22	
		"			l .				
		"			· ·				
		"			· ·				
ALKALINITY	42.5	mg CaCO3/	2.0		кір	4072	SM2320 B	06/08/23	
CYANIDE	ND	mg/L	0.005	0.2	tjb	4072	D7511-12	06/07/23	
TOTAL DISSOLVED SOLIDS	78	mg/L	10	500	mso	4072	SM2540 C	06/13/23	
CHROMIUM	ND	mg/L	0.001		tjb	4072	200.8	06/02/23	
BERYLLIUM	ND	mg/L	0.0003		tjb	4072	200.8	06/02/23	
NITRITE-N	ND H3	mg/L	0.01	1.0	anl	OR100063	SM4500-NO3 F	05/30/23 16:41	
ARSENIC	ND	mg/L	0.0005		tjb	4072	200.8	06/02/23	
SELENIUM	ND	mg/L	0.001		tjb	4072	200.8	06/02/23	
SILVER	ND	mg/L	0.0002		tjb	4072	200.8	06/02/23	
CADMIUM	ND	mg/L	0.00025		tjb	4072	200.8	06/02/23	
ANTIMONY	ND	mg/L	0.001		tjb	4072	200.8	06/02/23	
NITRATE-N	1.10 H3	mg/L	0.005	10	anl	OR100063	SM4500-NO3 F	05/30/23 16:41	
BARIUM	0.0035	mg/L	0.001		tjb	4072	200.8	06/02/23	
LEAD	0.00027 J	mg/L	0.0005		tjb	4072	200.8	06/20/23	
MERCURY	ND	mg/L	0.0002		tjb	4072	245.1	06/13/23	
HARDNESS	39.4	mg CaCO3/	10		bj	4072	200.7	06/05/23	
	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY CARBONATE BICARBONATE HYDROXIDE ALKALINITY CYANIDE TOTAL DISSOLVED SOLIDS CHROMIUM BERYLLIUM NITRITE-N ARSENIC SELENIUM SILVER CADMIUM ANTIMONY NITRATE-N BARIUM LEAD MERCURY	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY 42.5 CARBONATE BICARBONATE HYDROXIDE ALKALINITY CYANIDE TOTAL DISSOLVED SOLIDS CHROMIUM BERYLLIUM NITRITE-N ARSENIC SELENIUM SILVER CADMIUM SILVER CADMIUM ANTIMONY NITRATE-N BARIUM LEAD MERCURY 6.15 H5 42.5 ND H2.5 ND H2.5 ND H3 ND	CORROSIVITY HYDROGEN ION (pH) 6.15 H5 pH Units ALKALINITY 42.5 mg CaCO3/ CORROSIVITY -2.92 SI CARBONATE ND mgCaCO3/I BICARBONATE 42.5 mg CaCO3/I HYDROXIDE ND mg CaCO3/I ALKALINITY 42.5 mg CaCO3/I CYANIDE ND mg/L TOTAL DISSOLVED SOLIDS 78 mg/L CHROMIUM ND mg/L BERYLLIUM ND mg/L NITRITE-N ND H3 mg/L ARSENIC ND mg/L SELENIUM ND mg/L SILVER ND mg/L CADMIUM ND mg/L ANTIMONY ND mg/L NITRATE-N 1.10 H3 mg/L BARIUM 0.0035 mg/L MERCURY ND mg/L	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY 42.5 mg CaCO3/ 2 CARBONATE BICARBONATE HYDROXIDE ALKALINITY A2.5 mg CaCO3/ 42.5 mg CaCO3/ 2 MD mgCaCO3/ 2 HYDROXIDE ALKALINITY A2.5 mg CaCO3/ 2 ND mg CaCO3/ 2 CYANIDE TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED TOTAL DISSOLV	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY 42.5 mg CaCO3/ 2-2.92 SI CARBONATE BICARBONATE HYDROXIDE ALKALINITY ALKALINITY ALS mg CaCO3/ 2 mg/L 0.005 0.2 TOTAL DISSOLVED SOLIDS 78 mg/L 0.001 BERYLLIUM ND mg/L 0.0003 NITRITE-N ND mg/L 0.0001 ND mg/L 0.0002 SELENIUM ND mg/L 0.0002 ANTIMONY ND mg/L 0.0002 ANTIMONY ND mg/L 0.0001 ND mg/L 0.0002 ND mg/L 0.0005	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY 42.5 mg CacO3/ 2 klp bj CARBONATE ND mgCacO3/ BICARBONATE HYDROXIDE HYDROXIDE ALKALINITY A2.5 mg CacO3/ 2 klp MGCaCO3/ Alp MGCACO3/ 2 klp MGCACO3/ Alp M	CORROSIVITY HYDROGEN ION (pH) ALKALINITY CORROSIVITY 42.5 mg CaCO3/ CARBONATE ND MgCaCO3/ BICARBONATE ND MgCaCO3/ HYDROXIDE ND MgCaCO3/ HYDROXIDE ND MgCaCO3/ ALKALINITY 42.5 mg CaCO3/ BICARBONATE ND MgCaCO3/ HYDROXIDE ND MgCaCO3/ ALKALINITY 42.5 mg CaCO3/ ALKALINITY 42.5 mg	CORROSIVITY HYDROGEN ION (pH) 6.15 H5 ALKALINITY 42.5 Mg CaCO3/L CORROSIVITY 42.5 Mg CaCO3/L CORROSIVITY 42.5 Mg CaCO3/L CORROSIVITY 42.5 Mg CaCO3/L CORROSIVITY 42.5 Mg CaCO3/L CARBONATE ND MgCaCO3/L HYDROXIDE ND Mg CaCO3/L ALKALINITY 42.5 Mg CaCO3/L CARBONATE ND Mg CaCO3/L ALKALINITY 42.5 Mg CaCO3/L CARBONATE ND Mg/L ND Mg	CORROSIVITY

NOTES:
ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL).
MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.
*Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: GSI Water Solutions, Inc. 55 SW Yamhill Street Ste 300

ANALYTICAL

Portland, OR 97204

System Name: System ID Number: Source Number: Multiple Sources: Sample Type:

Sample Purpose: Investigative or Other

Sample Location: GM1MW1

County:

Reference Number: 23-15512

Project: Santiam Canyon 0464.020.001 - (

Sample Number: GM1MW10523 Lab Number: 23_31092 Collect Date: 5/28/23 11:20 Date Received: 5/30/23

Report Date: 7/12/23

Sampled By: Mellisa Girbach

Sampler Phone:

Approved by: anp,bj,mcs,pap,pdk,1

Authorized by:

Thanh B Phan Lab Manager, Portland

							1	Lab Iviaria	ger, Portian	u T
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	SILICA	30.0	mg/L	0.05		bj	4072 a	200.7	06/05/23	
	TOTAL SUSPENDED SOLIDS	11.5 NN	mg/L	2		рар	OR100063 d	I-3765-85	06/01/23	
1032	MANGANESE	0.0776	mg/L	0.001		bj	4072 a	200.7	06/05/23	
1028	IRON	0.62	mg/L	0.050		bj	4072 a	200.7	06/05/23	
1002	ALUMINUM	0.52	mg/L	0.010		bj	4072 a	200.7	06/05/23	
1036	NICKEL	0.00086 J	mg/L	0.0005		tjb	4072 a	200.8	06/02/23	
1022	COPPER	0.0020	mg/L	0.002		tjb	4072 a	200.8	06/02/23	
1095	ZINC	0.0033	mg/L	0.0025		tjb	4072 a	200.8	06/02/23	
	FLUORIDE	ND	mg/L	0.10	4	jwn	4072 a	300.0	06/01/23	
1016	CALCIUM	10.5	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1052	SODIUM	3.8	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1031	MAGNESIUM	3.2	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1042	POTASSIUM	2.6	mg/L	0.5		bj	4072 a	200.7	06/05/23	
1017	CHLORIDE	1.4	mg/L	0.2		jwn	4072 a	300.0	06/01/23	
	MOLYBDENUM	0.00062	mg/L	0.001		tjb	4072 a	200.8	06/20/23	
1085	THALLIUM	ND	mg/L	0.0001		tjb	4072 a	200.8	06/02/23	
1055	SULFATE	1.6	mg/L	0.2		jwn	4072 a	300.0	06/01/23	
	Radiological									
4006	URANIUM	ND	mg/L	0.001	0.030	tjb	4072 a	200.8	06/02/23	
4000	GROSS ALPHA	ND	pCi/L	3	15	reh1	156	900.0	06/30/23	Analyzed by PacePA
4100	GROSS BETA	ND	pCi/L	4	50	reh1	156	900.0	06/30/23	Analyzed by PacePA
	Radium 226	ND	pCi/L	1		jlj		903.1	06/28/23	Analyzed by PacePA
	Radium 228	ND	pCi/L	1	5	val		904.0	06/23/23	Analyzed by PacePA

NOTES:
ND (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL).

MD (Not Detected): indicates that the parameter was not detected above the Lower Reporting limit (LRL).

MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established.

* Lab Code - lists the laborstory accreditation code plus a letter at the far right to indicate the Edge Analytical lab facility where the analyses was performed.