

TECHNICAL MEMORANDUM

Infiltration Testing to Estimate Soil Permeability and Infiltration Volumes for a Proposed Treated (Class A) Wastewater Infiltration Facility, North Santiam Canyon, Oregon

To: Peter Olsen, PE / Keller Associates

James Bledsoe, PE / Keller Associates

From: Matt Kohlbecker, RG / GSI Water Solutions, Inc.

Ellen Svadlenak, GIT / GSI Water Solutions, Inc.

Jason Melady, RG / GSI Water Solutions, Inc.

Date: January 18, 2021

This technical memorandum, prepared by GSI Water Solutions, Inc. (GSI), summarizes infiltration testing to measure the permeability of soils in the North Santiam Canyon, Oregon, and presents updated, planning-level estimates for the volume of advanced treated (Class A) wastewater that could potentially be infiltrated at four candidate sites.

1. Introduction

GSI (2020) evaluated the suitability of ten pre-selected sites in the North Santiam Canyon for potential infiltration of advanced treated (Class A) wastewater based on the following characteristics: (1) the level of effort for site development, (2) potential permitting challenges, (3) the volume of water that can likely be infiltrated based on aquifer characteristics, (4) the aerial extent of the aquifer beneath the infiltration facility, and (5) surficial soil permeability (i.e., the upper 6 feet of soil). GSI developed scores for each individual characteristic, and ranked the ten sites by potential for wastewater infiltration.

The GSI (2020) evaluation estimated surficial soil permeability (characteristic number 5 above) based on *regional-scale* studies of soil properties prepared by the U.S. Department of Agriculture (USDA). This technical memorandum documents an evaluation that was conducted to refine our understanding of surficial soil permeability in the North Santiam Canyon, and includes:

- A summary of infiltration testing conducted at four of the ten sites, which were conducted to obtain site-specific estimates for the permeability of surficial soils. The four sites were selected so that: (1) two sites would be tested in the Detroit-Idanha area and two sites would be tested in the Gates-Mill City area, and (2) the highest-ranking sites without fatal flaws would be tested in each area.
- An updated, planning-level approximation of the volume of advanced treated (Class A) wastewater that could be infiltrated at each the four candidate infiltration sites using the Hantush (1967) equation.

¹ See GSI (2020) for an in-depth discussion of fatal flaws and site raking.

The results of this memo represent a preliminary, planning stage of potential implementation of a treated wastewater infiltration system. Specifically, the Mid Willamette Valley Council of Governments, nor the North Santiam Sewer Authority, have engaged owners of the candidate sites to discuss using their property for wastewater infiltration, and the type of infiltration facility (e.g., rapid infiltration, infiltration basin, etc.) has not yet been determined by project engineers. Therefore, this memo is intended as a planning-level tool that provides preliminary approximation for infiltration feasibility in different soil types at select sites in the North Santiam Canyon.

2. Methods

This section presents an overview of the methods that were used to measure soil permeability (Section 2.1) and to approximate the volume of advanced treated (Class A) wastewater that could potentially be infiltrated at each of the four candidate sites (Section 2.2).

2.1 Field Methods to Measure Soil Permeability

Table 1 lists the sites where infiltration tests were conducted and the soil types that the USDA regional-scale soil survey identifies at each site. The location of the sites are shown in Figures 1 through 4. At relatively small sites (i.e., Freres and Bark Flat), only one infiltration test was performed. At relatively large sites (i.e., Tom Fencl and Rock Creek), two infiltration tests were performed.

Table 1. Tested Sites and USDA Soil Properties

Property	USDA Soil Group		l Permeability rofile	USDA Soil Permeability
		Depth	Permeability	Average
Tom Fencl	64 – Malabon Variant Loam	0" - 2" 2" - 16" 16" - 57" 57" - 60"	6 – 100 in/hr 2 – 6 in/hr 6 – 20 in/hr 20 – 100 in/hr	8.9 in/hr
Rock Creek	92 – Sifton Variant Gravelly Loam	0" - 15" 15" - 60"	2 – 6 in/hr 20 – 100 in/hr	13.3 in/hr
Freres		0" - 13"	3 - 11 in/hr	
Bark Flat ¹	7003 - Jimbo Medial Silt Loam	13" - 43" 43" - 59"	2 - 11 in/hr 28 - 43 in/hr	8.5 in/hr

Notes

(1) The GSI (2020) technical memorandum evaluated infiltration potential of the "Bark Flat West" property (tax lot 106E16CB01300). The infiltration test was conducted at the adjacent "Bark Flat East" property (tax lot 106E16CA01100) because permission could be easily obtained by the property owner. The "Bark Flat West" and "Bark Flat East" properties are characterized by similar characteristics (i.e., development effort, permitting challenges, infiltration volumes, USDA surficial soil type, and width of valley-filling alluvium).

USDA = United States Department of Agriculture

In/hr = inches per hour

Soil permeability was measured in general accordance with the United States Department of the Interior (USDI) Test Pit Method (USDI, 1993). The USDI test pit method measures saturated hydraulic conductivity, which is infiltration rate per unit hydraulic gradient. McKillip Excavating (Donald, Oregon) excavated test pits and a GSI geologist logged the soils in accordance with the Unified Soil Classification System (USCS) visual-manual method (ASTM, 2017). Test pits were excavated up to five feet below ground surface, into the most

permeable soil horizon based on the soil logging in the field and the soil horizons identified by the USDA in Table 1. At each testing location, potable water was introduced into the test pit for at least 3 hours and measurements of water column height and flow rate were recorded every five minutes. The purpose of monitoring water column height and flow rate is to ensure that the measured saturated hydraulic conductivity is representative of flow under the saturated conditions that occur in soil beneath an infiltration facility. Specifically, due to matric (negative pressure) forces, water added to dry soils moves faster than water added to saturated soils; a stable flow rate and water column height indicates that matric forces have become negligible as soils have become saturated, and that gravity is the primary force causing infiltration (USDA, 1982; Iowa DNR, 2020).

After infiltration rate and water column height had stabilized for at least 15 minutes. The saturated hydraulic conductivity was calculated using Equation (4) of USDI (pg. 103, 1993):

$$K = \frac{1,440(Q)}{(C)(a)(D)} \tag{1}$$

Where:

K is saturated hydraulic conductivity in feet per day,

1,440 is a conversion factor to convert minutes to days,

Q is the flow rate into the test pit during the test in cubic feet per minute,

D is the water column height in the test pit in feet,

a is the smallest surface dimension of the test pit in feet, and

C is the conductivity coefficient, which is a constant based on the shape of the test pit (i.e., a rectangle) and ratio of water column height to test pit surface dimension (i.e., D / a).

Test pit logs are provided in Attachment A. Infiltration test data sheets showing measurements of *D* and *Q* during each test are provided in Attachment B. Following the infiltration test, excavated soils were returned to the pit and soils were compacted with a compactor.

2.2 Hantush (1967) Calculations to Estimate Infiltration Volume

Previously, GSI (2020) used the Hantush (1967) equation to develop estimates of infiltration volume at the four candidate sites assuming a hydraulic conductivity for the Glacial Till geologic unit (i.e., an average value based on well tests documented on water well driller logs on file with the Oregon Water Resources Department) or for the Alluvium of the Santiam River geologic unit (i.e., from the scientific literature). In this technical memorandum, we re-run the Hantush (1967) equation using the measured saturated hydraulic conductivities from the infiltration tests. If multiple test pits were dug at a site, then we conservatively used the lowest calculated hydraulic conductivity, which would provide an infiltration volume estimate that is biased low. The re-run Hantush (1967) infiltration volume estimates from this technical memorandum were combined with the estimates from GSI (2020) to develop a range of potential infiltration volumes at each site.

The reader is referred to GSI (2020) for a discussion of the Hantush (1967) equation and variables that were used to calculate infiltration volumes (i.e., infiltration basin sizes, storage coefficient, etc.).

3. Results

This section documents the results of the infiltration tests (Section 3.1) and Hantush (1967) infiltration volume estimates (Section 3.2).

3.1 Infiltration Tests to Calculate Hydraulic Conductivity

Table 2 shows the variables that were used to calculate saturated hydraulic conductivity at each test pit location, and the values of saturated hydraulic conductivity calculated using Equation (1). The calculated saturated hydraulic conductivities range over two orders of magnitude (even at the same site), which is an expected range of variation for hydraulic conductivity (Anderson and Woessner, Table 3.3, 1992). In addition, the measured saturated hydraulic conductivities are either within or just outside of the ranges in the USDA soil survey (see Table 1).

Table 2. Tested Sites and USDA Soil Properties

Property (soil type)	Test Location	Flow Rate, Q	Conductivity Coefficient, C	Surface Dimension, a	Water Column Height, D	Saturated Hydraulic Conductivity, <i>K</i>	Saturated Hydraulic Conductivity, K
Tom Fenci	TF-IT-1	1.4 gpm 0.18 ft³/min	7.615	2.0 ft	2.21 ft	7.8 ft/day	3.9 in/hr
(0.4)4	TF-IT-2	2.3 gpm 0.31 ft³/min	5.930	2.0 ft	0.79 ft	47.3 ft/day	23.7 in/hr
Rock Creek	RC-IT-1	1.0 gpm 0.13 ft³/min	5.759	2.0 ft	0.65 ft	26.0 ft/day	13.0 in/hr
$(92)^2$	RC-IT-2	1.7 gpm 0.23 ft³/min	5.568	2.0 ft	0.48 ft	61.3 ft/day	30.7 in/hr
Freres (7003) ³	F-IT-1	1.8 gpm 0.23 ft³/min	5.653	1.5 ft	0.42 ft	95.2 ft/day	47.6 in/hr
Bark Flat (7003) ⁴	BF-IT-2	0.82 gpm 0.11 ft³/min	8.084	1.0 ft	1.31 ft	14.9 ft/day	7.47 in/hr

Notes

ft/day = feet per day

in/hr = inches per hour

ft = feet

gpm = gallons per minute

USDA = United States Department of Agriculture

3.2 Hantush (1967) Calculations to Estimate Infiltration Volume

Table 3 presents Hantush (1967) estimates for infiltration volume at each candidate site, and includes a low-end infiltration volume and a high-end infiltration volume. The low-end and high-end estimates used different values for hydraulic conductivity: (1) a hydraulic conductivity calculated from the infiltration tests conducted as part of this study (see Table 2) and (2) a hydraulic conductivity from water well tests documented on water well driller logs from the Oregon Water Resources Department (OWRD, 2020) or

⁽¹⁾ Soil type is "64 - Malabon Variant Loam"

⁽²⁾ Soil type is "92 - Sifton Variant Gravelly Loam"

⁽³⁾ Soil type is "7003 - Jimbo Medial Silt Loam"

ft³/min = cubic feet per minute

literature references [see GSI (2020)]. Note that the infiltration volumes in Table 3 do not include safety factors.

Table 3. Infiltration Volume Estimates Calculated from Hantush (1967), Assuming One Year of Infiltration.

Property	Infiltration Basin Area	Low-End Infiltration Volume	High-End Infiltration Volume	Notes ¹
Tom Fencl	12.5 acres	0.87 MGD	1.95 MGD	Low-end from infiltration test (K=7.8 ft/day) and highend from driller log (K=21 ft/day)
Rock Creek	16.7 acres	1.14 MGD	1.36 MGD	Low-end from driller log (K=21 ft/day) and high-end from infiltration test (K=26 ft/day)
Freres	10.5 acres	0.30 MGD	0.51 MGD	Low-end from book value (K=50 ft/day) and high end from infiltration test (K=95.2 ft/day)
Bark Flat ¹	4.8 acres	0.22 MGD	0.30 MGD	Low-end from infiltration test (K=14.9 ft/day) and high-end from driller log (K=21 ft/day)

Notes

MGD = Million gallons per day

ft/day = feet per day

(1) Saturated hydraulic conductivities from "infiltration tests" are from the testing described in this report. Saturated hydraulic conductivities from "driller logs" or "book value" are from the GSI (2020) report. See the GSI (2020) report for additional details about how these values were calculated, and the limitations of these values.

The Tom Fencl (Malabon Variant Loam) and Rock Creek (Sifton Variant Gravelly Loam) sites have the highest estimated infiltration volumes. Note that infiltration volume is primarily a function of hydraulic conductivity, infiltration basin size, and depth to groundwater (i.e., to accommodate the rising groundwater table during infiltration). Therefore, it is important to recognize that the reason the infiltration volumes are highest at the Fencl and Rock Creek sites is related to the deep water table and large area to accommodate an infiltration basin *in addition* to the high hydraulic conductivities [see GSI (2020) for a detailed discussion of the hydrogeologic characteristics at each site].

The infiltration volumes in Table 3 are planning-level estimates. The following uncertainties may result in actual infiltration volumes that are different than the planning-level estimates in Table 3:

- Depth to Groundwater. The depth to groundwater at each site is variable and estimated from water well driller logs. As such, the depth to groundwater at each site is not well understood. Installation of monitoring well(s) at each site and groundwater level monitoring for a year would reduce uncertainties related to depth to groundwater.
- Long-Term Performance Declines. The infiltration volumes in Table 3 do not include declines in infiltration rate over time caused by clogging of soil pores. Incorporation of a safety factor into the infiltration volumes can be used to account for long-term performance declines.
- Variability of Soil Characteristics. Soil properties will vary across each site. Additional infiltration testing would reduce uncertainties related to the variability of soil characteristics.
- Other Site-Specific Factors. Other factors may limit the volume of water that can be infiltrated at
 each site. For example, a steep slope is present at the Rock Creek site. This slope may limit the
 volume of water that can be infiltrated at a site due to the formation of seeps as groundwater

elevations increase during infiltration. Site-specific hydrogeologic information, and additional details about infiltration system design, are needed to assess whether site-specific factors would limit the volume of water than can be infiltrated at each site.

4. Conclusions and Recommendations

This technical memorandum provides preliminary estimates of soil permeability (hydraulic conductivity) and infiltration volume at four candidate infiltration sites in the Santiam Canyon. The hydraulic conductivity and infiltration volume estimates are intended as a planning-level tool to guide future implementation efforts for a regional advanced (Class A) treated wastewater infiltration system. We make the following conclusions based on this analysis:

- Infiltration testing was conducted in soil classes that the USDA identified as the most permeable soils in the Santiam Canyon; the infiltration testing confirms that these soil classes are in fact highly permeable (specifically, the Malabon Variant Loam, the Sifton Variant Gravelly Loam, and the Jimbo Medial Silt Loam).
- Based on projected 2065 flows for Detroit, Idanha, Gates, and Mill City, the average annual daily infiltration volume is estimated to be 0.365 MGD and the peak daily infiltration volume is estimated to be 0.728 MGD (personal communication, 2021). As shown in Table 3, the Fencl site (Malabon Variant Loam) and the Rock Creek Site (Sifton Variant Gravelly Loam) in the Gates-Mill City area can infiltrate the average annual daily flow and peak daily flow for a year², even under the worst case ("Low End") infiltration volumes. Note that this comparison between infiltration capacity and average annual / peak daily flow is for planning purposes only, and needs to be refined with data from a detailed site-specific soils investigation and incorporation of safety factors, as we discussed in Section 3.

We make the following recommendations for implementing an advanced treated (Class A) wastewater infiltration project in the Santiam Canyon:

- Engage the Oregon Department of Environmental Quality (DEQ) to identify potential fatal flaws to implementing an infiltration facility related to the Three Basin Rule [see GSI (2020) for a detailed discussion] and protecting groundwater quality at domestic drinking water wells.
- After receiving property owner agreement for implementation of a wastewater infiltration facility, conduct a drilling program to evaluate site-specific factors that impact the volume of water that could be infiltrated at the site (e.g., aquifer thickness, depth to groundwater, additional measurements of hydraulic conductivity, and specific yield). The drilling program will also be used to collect data that is needed by DEQ to make a permitting decision (i.e., whether the facility is permitted with a National Pollutant Discharge Elimination System permit or Water Pollution Control Facility permit).
- The infiltration volume estimates presented in the technical memorandum assume wastewater is infiltrated at a rectangular infiltration basin. If a different facility design is used to infiltrate wastewater (e.g., rapid infiltration basin, which uses a well to infiltrate water), then develop infiltration volume estimates corresponding to the facility design. Infiltrating at a well is different because: (1) the physics of water movement are different at a well (i.e., water moves radially away from the well), so different equations are needed to estimate mounding, and (2) the area through which water exfiltrates is significantly smaller for a well (however, despite the smaller area, a well

GSI Water Solutions, Inc. • 6

² The analysis assumes that the groundwater response to infiltration (i.e., the groundwater mound) reaches steady-state conditions after one year of infiltration.

may encounter more permeable soils and, therefore, infiltrate an equivalent volume of water as a rectangular infiltration basin).

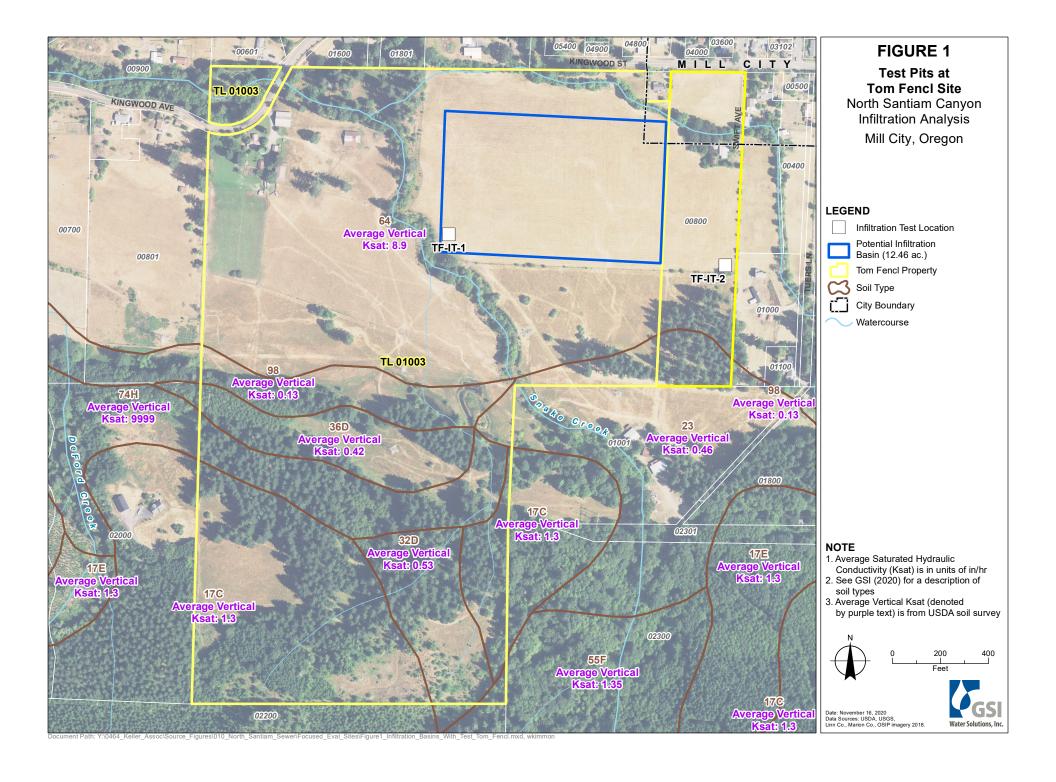
• Refine the infiltration volume estimates by reducing uncertainties related to depth to groundwater, long-term performance declines, variability of soil characteristics, and other site-specific factors.

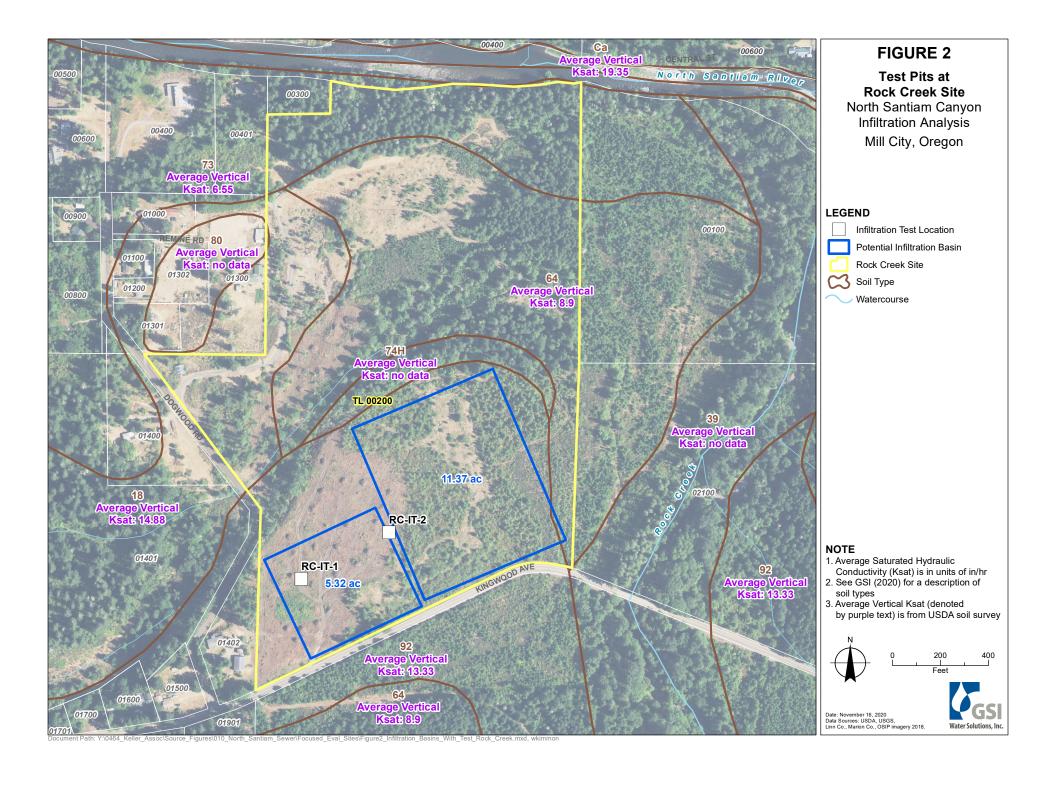
5. References

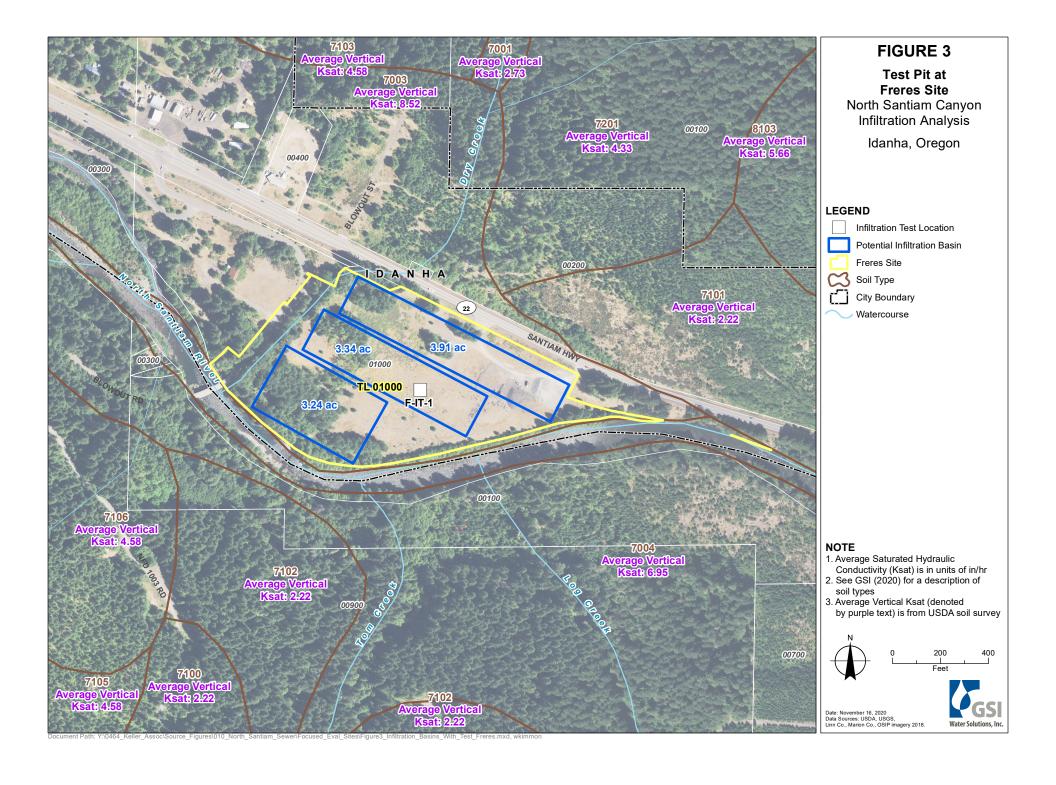
ASTM. 2017. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). July 15.

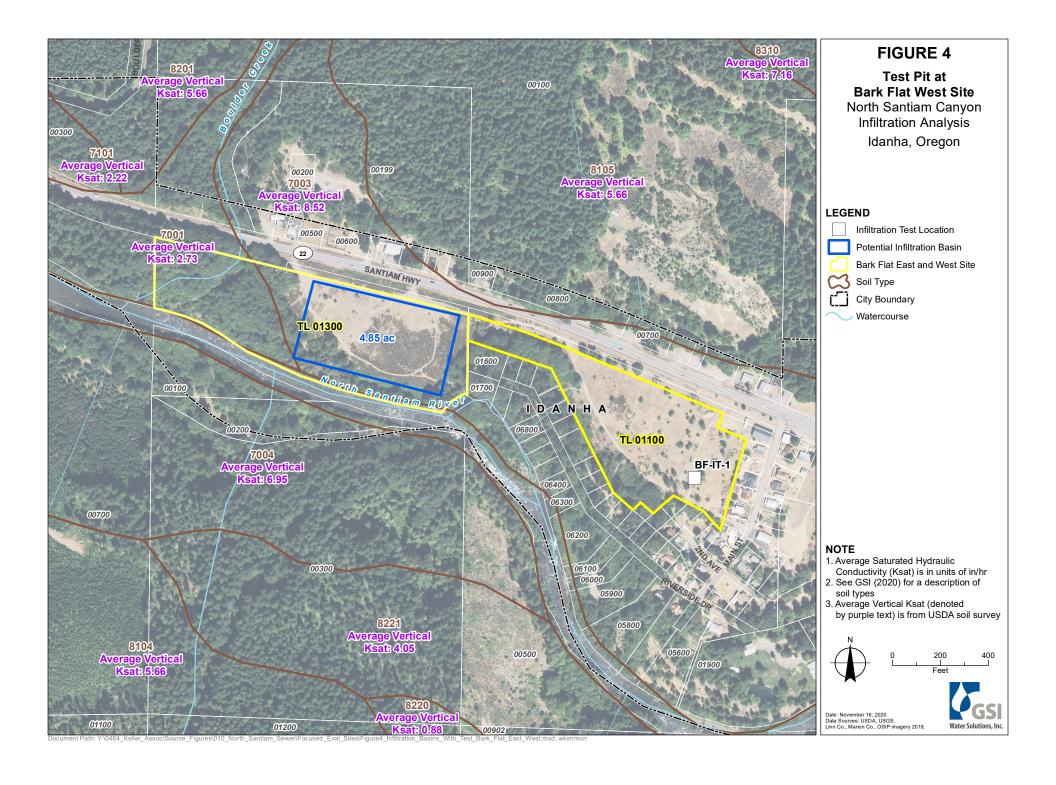
GSI. 2020. Desktop study to rank sites by suitability for infiltration of Advanced Treated (Class A) Wastewater, North Santiam Canyon, Oregon. Prepared for: Keller Associates. October 8.

Hantush, M. S. 1967. Growth and Decay of Groundwater Mounds in Response to Uniform Percolation. Water Resources Research (3): 227-234.


Iowa DNR. 2020. Iowa Department of Natural Resources Storm Water Manual. Available online at: https://www.iowadnr.gov/Environmental-Protection/Water-Quality/NPDES-Storm-Water/Storm-Water-Manual.


OWRD. 2020. Oregon Water Resources Department Well Report Query. Available online at: https://apps.wrd.state.or.us/apps/gw/well_log/. Accessed by GSI in September 2020.


Personal Communication. 2021. Email from Peter Olsen (Keller) to Matt Kohlbecker (GSI). Average Annual Daily Flow (2065) and Peak Daily Flow (2065): Wastewater Master Plan Planning Criteria. January 16.


USDA. 1982. Measuring Hydraulic Conductivity for Use in Soil Survey. Soil Survey Investigations Report No. 38. USDA Soil Conservation Services. 18 pg. Available online at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053204.pdf.

USDI. 1993. Drainage Manual: A Water Resources Technical Publication. U.S. Department of the Interior, Bureau of Reclamation. 340 pp.

-ATTACHMENT A---Test Pit Logs

		Well ID:	Project Number	40			
		TF-TP-1 464.010 Sheet of					
Water Sc	olutions, Inc.		Drilling LOG				
Project:	Santi	am	Location: Tan F	end site			
Drilling (Contractor:			achhoe			
Start Dat	te:	End-Date	1 11 / /	SAMK			
			Water Levels:				
Start Car			Total Depth:	st sa"			
Depth	Sam	iple	Description	Comments			
Below Surface (ft)	Sample Interval/ Recovery	USCS Summary	Relative density or consistency, color, moisture, MAIOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name)	Issues Encountered, Water Levels			
0-4'-	441		moderately dense, att dark -				
=	ML		brown, dry to moist, SILT(M)				
_			610% clay, moderate to low				
-			plasticity, Firm, roots in				
=			~ top 1 ft, trace growel r=				
_			Cobbles, max size = 5 in, ram	ded			
-			some oxidized zones				
_			gravel /cobbles = 1-5"				
4.51-			hit growel (cobbles -	_			
-			hit growel (cobbles = 5-8", rounded -				
_			-				
_			_				
_			_				
=			=				
_							
-	3			4			
			-				
_			_	M			
_							
-							
	1						

		Well ID:	Project Number 464.010	Sheet (of /
Water Solutions, Inc.			Drilling LOG	Sheet (of)
	Santial	100 2		enel Site
	Contractor:			rek hoe
Start Dat			: 11/2/20 Field Personnel:	
		1000-511-54-1-4-1	Water Levels:	will the state of
Start Car	d No:		Total Depth:	
Depth	Sam	ıple	Description	Comments
Below Surface (ft)	Sample Interval/ Recovery	USCS Summary	Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name)	Issues Encountered, Water Levels
6-51-		M	medium dense, dorte brown, - dry to moist, SILT (ML), - well sorted, trace crim) gravel + sax fine sand, low_ plasticity, medium toushness- most roots in top fow inches	

Well ID: RC-TP-1 **Project Number** 464.000

Sheet

of

Drilling LOG

Project: Santiann

Drilling Contractor: Makillip

Start Date: End Date: 10/29/20

Location: Rock Creek
Drilling Method: Back hae
Field Personnel: GS + M/2

Water Levels:

Start Card No:			Total Depth: 2.5	
Donth	Sam	ple	Description	Comments
Surface Interval/ Recovery Summary		Summary	Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name)	Issues Encountered, Water Levels
6 - 2. S			1008, dark brown, dry Silty Gravel (GM) 90 Vol: 40% gravel 60% fines 0/0 Wt: 60% gravel, 40% fines subrounded to subangular max size: 1.6' diameter non plastic, uncernented Glacial till abundant roots in upper ft- boulders primarily tuff	

Drilling LOG Project: Santiam Location: Rock Creek, Mill City Drilling Contractor: Millip Start Date: End Date: 10/29/20 Field Personnel: ES Water Levels: Start Card No: Total Depth: Z' x 4' X 3' Depth Below Sample Relative density or consistency, color, moisture, MAJOR			Well ID:	TD-7	Project Number 464.010	Sheet / of	
Drilling Contractor: Start Date: End-Date: Ind-Date: Ind-Dat	Manual Control	ACTION ASSESSMENT TOTAL					
Drilling Contractor: Start Date: Find-Date:- 10/29/20 Field Personnel: Water Levels: Start Card No: Total Depth: 7' x 9' x 3' Depth Below Surface (ft) Recovery (ft) 0-3' - 4 GM Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Silty Granel (GM) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Silty Granel (GM) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Silty Granel (GM) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Silty Granel (GM) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Silty Granel (GM) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, trace descriptors, plasticity, grain size/shape, structure, (geologic name) - Constituent, structure, geologic name) - Constituent, structure, struct							
Start Card No: Sample Description Comments				7//:			
Start Card No: Total Depth: 7' x 4' x 3' Depth Below Surface (ft) Recovery (ft) 0-3' - 6 Substitution of the control of t				7			
Start Card No: Depth Sample Description Comments	Jean C Dat		Liiu Date	- 10/69/60			
Depth Below Sample Description Comments Sample Interval / Recovery (ft) 0-3' -	Start Car	d No:				x 41 X 31	
Below Surface (ft) Recovery Summary Relative density or consistency, color, moisture, MAJOR (NOSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) 8-3-8-8-9-8-9-8-9-8-9-9-9-9-9-9-9-9-9-9-			ple	Descrip		Comments	
6-3'- 6 Gm /00 sc, dark brown, dry - 2 larse 1> 15 in) Silty Growel (Gm) - borlders removed from top 1. S th Sub angular to sub rounded cobbles/bootders max size: 1. 8' diameter - non plastic poorly serted matrix Glacial till roots abundant in upper ~1ft -	Below Surface	Interval/	1 62	CONSTITUENT, trace descr	riptors, plasticity, grain	Issues Encountered, Water Levels	
	1		Gu	1008e, dark brown Sity Granel (GAR ~ 60% granel, 46 Sub angular to sub max size: 1.8% a non plastic poorly signature of abundant is	or, dry ores by wt raunded cobbles boots liameter sortial matrix in upper ~1ft -	borlders removed From top 1.5 st ters	

4 4 4 7 1

.

		Well ID: Project Number					
		FR	-TP-1 464.010	Sheet / of			
Water So	GSI lutions, Inc.	Drilling LOG					
Project:	Santu	com Location: Frences property					
Drilling C	Contractor:			ruk hoe			
Start Dat		End Date	and the second s	2			
				unsians: ~3×6'			
Start Car	d No:		Total Depth: 3. 5				
Depth	Sam	ple	Description	Comments			
Below Surface (ft)	Sample Interval/ Recovery	USCS Summary	Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name)	Issues Encountered, Water Levels			
6-3.5			loose, brown, dry to moist -	Soil very radey,			
-			GRAVE (GW) W/siH+ v. fine-	rocky, large boulders			
		III	GRAVE (GW) W/siH + v. fine - Sand, well graded/poorly sorted, 10W plasticity matrix, gravels - are subravaded to rounded -	CZSHbas			
_			10W plasticity matrix, grands _	caused pit +			
_			are subravaded to rounded -	had to enver			
-			from a com size to mix -	voince (6 epittowige)			
-			Site of 1.5 A				
_			_				
-			_	720 n.g. =			
; - ;			_	v ***			
-			-				
			-				
			_				
-			=				
03			_				
3 -			-				
			· ·				
-			[_				
1-			·-				
:-			g-				
_			_				
				*			
_							
-			_				
-			_				
_			-				
:=			=				

BETTP- 444-010 Sheet of Drilling LOG Project: Santam Location: Bak Hat East Drilling Contractor: McMIIP Drilling Method: bakkwe + Shave Start Date: End Date: 11/3/20 Field Personnel: ES Water Levels: Start Card No: Total Depth: Depth Sample Description Comments Below Surface Provide descriptors, plasticity, grain (th) Recovery (Well ID:	Project Number				
Project: Santam Location: Bark Hat East Drilling Contractor: McKillip Drilling Method: backhee + shace Start Date: End Date: 11/3/20 Field Personnel: ES Water Levels: Start Card No: Total Depth: Depth Below Surface Interval/ (ft) Recovery Summary CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) IMSE, brown, moist to dry - GRAVEL (GM) W/ Silt + Sand, well graded / poorly Sorted, matrix is non plastice Masts range from a classe			BF-	TP-1 464.010	Sheet of			
Start Date: Start Date: End Date: 1 / 3 / 20 Field Personnel: E S	Water So	GSI lutions, Inc.	Drilling LOG					
Drilling Contractor: McMILIP Start Date: End Date: 11/3/20 Field Personnel: ES Water Levels: Start Card No: Total Depth: Depth Below Surface (ft) Recovery Summary Recovery Description Comments Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) Issues Encountered, Water Levels Sand, well graded / poorly Sorted, Matrix is non plastic. Masts range, from all care	Project:	Santia	am	Location: Bark	Flat East			
Start Date: End Date: 1/3/20 Field Personnel: ES Water Levels: Start Card No: Total Depth: Depth Below Surface (ft) Recovery	Drilling C	Contractor:	Mekil	llip Drilling Method: b				
Start Card No: Depth Below Surface (ft) Sample Description Comments Sample Sample Comments Sample Summary Constituent, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) Sand, well graded party Sarted matrix is nan plastic Comments Comments Comments Issues Encountered, Water Levels Issues Encountered, Water Levels Sand, well graded party Sarted Matrix is nan plastic Clasts range from all comments Comments		:e:	End Date:	= 11/3/20 Field Personnel: 1				
Depth Below Surface (ft) Sample Interval/ Recovery Summary Summ								
Below Surface (ft) Sample Interval/ Recovery Summary Recovery Summary Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) ISSUES Encountered, Water Levels Size/shape, structure, (geologic name)	Start Car	d No:		Total Depth:				
Below Surface (ft) USCS Summary Relative density or consistency, color, moisture, MAJOR CONSTITUENT, trace descriptors, plasticity, grain size/shape, structure, (geologic name) ISSUES Encountered, Water Levels Summary Size/shape, structure, (geologic name) ISSUES Encountered, Water Levels Size/shape, structure, (geologic name) Size/shape, st	Depth	Sam	ıple	Description	Comments			
GRAVEL (GM) w/ silt + - sand, well graded / poorly sorted, - motrix is non plastic - Clasts range from along	Below Surface	Interval/		CONSTITUENT, trace descriptors, plasticity, grain	Issues Encountered, Water Levels			
	1577			losse, brown, moist to dry- GIZAVEL (GM) W/ silt + sand, well graded / poorly sorted, motrix is non plastic				

-ATTACHMENT B----**Infiltration Test Data Sheets**

Site ID Santidm - 464.010 Ton Fence	Pageof
Test ID Test Start Test Stop Initial Water Level Final Water Level Measuring Point Descrip. Remarks	Pit Depth ft Pit Area
-	

Date/Time	Elapsed Time	Water Bepth	Totalizer Reading	Flow Rate	Comments
11/2/20	(min)	(ft) to	(xgal)	gpm	
0906	pre-test		642.9		
0908					water on
6910	2	2.25"	650.6	3.692	
0915	7	6.25"	668.0	3-626	
6921	13	ll'a	691,1	3.527	2.
0925	17	110.75"	703.7	3.401	
0930	7.2	1'3.25"	721.0	3.378	
935	27	11 5.5"	736.0	3.296	@ 936 DECREASIL FLOW PATIE TO 2.381 GPM
940	32	1' 7"	748.5	2.340	
945	37	1'8"	760.1	2.315	
950	42	1' 925"	771.9	2.258	Ĭ
955	47	1' 10,25"	782.9	2,241	@ 956 REDUCE FLOW RATE TO
1000	52	1' 10,75	793.0	1.945	
1005	57	1' 11-5"	5.208	1.920	
1610	62	2'	8/3.3	1.912	adjust QV to mointain 2'
1015	67	21 0.5"	821.8	1.646	1 € to 1:5 gpm @ 1018
1020	72	21 0.511	830.1	1.508	9 ************************************
1025	77	7 ' 6.25"	837.3	1.483	
1036	82	2'1"	844.8	1,483	
1035	87	2'1"	852.3	1.483	switched water tanks @ 1036
1040	92	2'0.5"	855.9	1.003	adjusted @ to 1.4 pm
1045	57	21111	864.6	2.011	
1047	100	t-0.75"	1872.6	11.483	adjust ce = 1-5 gpm
1050	102	2'1.25"	4	5	

Project Site ID Santiam 464.010 TF-TP-1 Page 2 of 2

Date 1//2/20

Date/Time	Elapsed Time	Water Depth	Totalizer	Flow Rate	Comments
11/2/20	(min)	(ft)	Reading (xgal)	gpm	Comments
1055	107	2'1.5"	879.7	12450	
1100	112	7'1.5"	887.2	1.442	
1105	117	2'1.75"	894.1	1.417	va, stishtly close value
1110	122	2'1.75"	901.1	1.384	7 Stesting Close Value
1115	127	2/2"	908.1	1.384	Va to ~1 Zam
1120	132	211.75"	914.1	1.170	10 to ~1. Zgpm 10 to ~1. Zgpm
1125	137	2'2"	921.0	1.360	- James
1130	142	2'2"	927.5	1.335	:4
1/35	147	2'2"	934.3	1.310	
1140	152	2'2.25"	940-8	1.318	
1145	157	2'2.25"	946.9	1.277	adjust @ to 1.327 01145
1150	162	2'2.25"	953.6	1.318	
1155	167	2'2-25"	960.0	1-302	
1200	172	7 13 42.41		1.294	10 to 1.351
1205	177	2/3/2.5"		1.310	
1210	182	2'35"	979.9	1.360	
1215	187	2'2.5"	986.8	1.368	Water off e 1215
1226		2'2''			
1225		2'1"			
1230		2'			
1235					
1240		1'10.25"			
1245		119.25"			
1250		118.511			
1300		1'7,5"			
		1'6.25"			
1305		16.65			

Project Santian Site ID Tom	n-464.010 P-Z Fenel	Pageof Date1//2/20_	
Test ID Test Start Test Stop Initial Water Level Final Water Level Measuring Point Descrip Remarks	TF-TP-2 1325 (prespak)	Pit Depthft Pit AreaXft	

Date/Time	Elapsed Time	Water Depth level (ft) ft.in	Totalizer Reading (x gal)	Flow Rate	Comments
1322	pre-tes	. 0	987.D	O _	
1325					water on
1330	5	3.75"	1006.4	3.7	
1335	10	5"	1025.4	3.749	
1340	15	5.75"	1043-8	3.667	
1345	20	6.25"	1062.0	3-609	
1350	25	6 \$ 5 "	1080-1	3.576	
1355	30	625"	1098-1	3.518	
1400	35	6.75"	1115.7	3.527	
1405	40	7:25"	1133.4	3.453	
1410	45	7.5"	1150.5	3.420	
1415	50	7.75"	1167.7	3.420	
1420	55	811	1184.6	3.428	
1475	60	8.25"	1201.9	3.370	100 to 3 gpm @ 1426
1430	65	8.25"	1217.3	3.016	
1435	70	8.25"	1232.5	2.975	
140	75	8.25"	1247.2	2.991	
1445	80	8.5"	1262.1	2.950	10 to 2.85pm € 1446
1450	85	812511	1276.6	2.777	
1455	10	8-2511	1290.3	2.7-7-7	
1500	95	8.25"	1304.1	2.752	switch water tanks @ 1502
1505	100	8.75"	1314.5	2.777	
1510	105	8 ''	13280	2.703	
1515	110	8 11	1341.8	2.645	Paback to 2.7 gpm @ 1576

Project

Santiam 464.010

Site ID TF - TP - Z

Date/Time	Elapsed Time	Water Depth.	Totalizer Reading	Flow Rate	Comments
	(min)	(ft) in	(xgal)	gpm	
1520	115	8-25"	1355-le	2727	
1525	120	8.5"	1369.2	2.703	sightly V a @ 1526, ~263 gym
1530	125	8.5"	1382.7	7.604	
1535	130	8.7-5"	1355-1	2.579	10 to 7.5 gpm 0 1536
1540	135	~ 8.8"	1408.0	2.505	3
1545	140	9"	1420,4	7.406	VQ to 2.45pm e1540
1550	145	9"	1432.7	2.406	
1555	150	9"	1444.6	7.3838	
1600	155	9"	1456.6	2.406	
1605	160	9.25"	1468.6	2.431	
1610	165	9.25"	1480.6	2.381	
1615	176	9.5"	1452,5	2.352	
1620	175	7.5"	1504.2	2.324	
1025	180	7.5"	1515.7	7.307	
1630	185	7.25"	1524.5	_0	water art
1635		7.5"			
1040		6. S'I			
1645		511			
					*
					t and the second
					•
9					
			19		
= 0		(n) A)			

Project 444.010
Site ID Rock Creek

Test ID <u>RC-TP-</u>

Test Start

0914 (pre-Soale)

Test Stop

Pit Depth ______ft
Pit Area _________ft

Initial Water Level

Final Water Level

Measuring Point Descrip. STAFF GAUGE, 0:25" ACCURACY

Remarks

BOTTOM LEVEL IS WATER COLUMN HEIGHT ABOVE PIT

14.5

Date/Time /0/29/20	Elapsed Time (min)	Water Depth HEIGH T	Totalizer Reading (x gal)	Flow Rate	Comments
09:14	0		14.5	2.5	
0920	6	UI"	30.9	,1	
0925	11	4.5"	44.1		0925, 2.49pm using bucket
0530	16.	5"	54.6	2.4	
0935	21	6"	66.6e	7.39	
0936	22			1. 3	adjust 6. L, close
0940	26	5.75"3	74.3	1.327	ball value 1/4 turn
0945	3 (5.25"	81.2	1.335	
0950	36	5"	87.9	1.318	10 , open /2 turn to 2.15 gps
0955	41	5.7-5"	98.8	7.142	
1000	46	6.25	109.0	2.118	
1005	51	7"	1195	7.118	
1008	54			1. +	VO, Slishtly close value
1010	56	7.25"	130-9	1.689	
1015	61	7.5"	137.8	1.706	
1020		~7.4"	146.4	1.68	
1025	71	7,5"	153.5	1.689	0
1030	76	7,75"	162.8	1.673	REDUCE FLOW TO 1.467 68 M.@
1035	81	7.75"	170.5	1,442	FLOW TEST, 6 QT IN 60 5 = 1,5 9P/
1040	86	7,75"	176.6	1,437	
1045	91	7.75"	184.2	1.434	REDUCE FLOW TO 1,29 @ 1047
1050	96	8,00"	191.0	1.294	REDUCE FLOW TO 1.07 6PM @ 1053
1055	101	8.00"	196.6	1.038	
1100	106	7.75	202.0	1.038	

Project 464.010

Site ID Peck CREEK

Page 2 of 2 Date 10/29/2020

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
	(min)	(ft)	(xgal)	gpm	
1105	111	7.5"	207.4	1.030	
1110	116	7.5"	214.0	1.030	
1115	121	7.25"	219.8	1.022	
1120	126	7.25"	222.8	1.014	2.5 min ET
1125	13/	7.25"	278-6	1.022	
1130	136	7.25"	233.4	1.014	
1135	141	7.25"	239	1.030	
1140	146	7.25"	244	0.997	slightly open value
1145	151	7.25"	248.8	1.07/	
[15]	147	7.5"	255.2	1.079	
1155	161	7.511	759.6	1.07/	
1200	166	7.75"	264.9	1.646	slightly dose value - 1.014
1205	171	7.75"	770-3	1-005	
1210	176	7.75"	274.9	1.005	
1215	181	7.75"	780.0	0-989	
		,	280-3	y y ha	E-final totalizer
1220		6.511			falling head
1225		5075"			
12.30		4.75"			
1235		4.0011			
~				W. E.	
				1	
				\$1 ST 1	

Test Stop

Initial Water Level

Project Site ID	464.010 Santiani BC-TP-Z Rock Creek	Page of 7 Date 10/29/20
Test ID	RC-TP-Z	
Test Start	1255 (pre soale start)	Pit Depthft
Test Stop		Pit AreaXY_ft

Final Water Level	
Measuring Point Descrip.	
Remarks	

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
16/29/20	(min)	(st) in	(x gal)	gpm	
1753	Ne-Start		280.3		
1254			288.1	3.329	worter 1233, worter
1300	. 5	275"	11 2	it 2	Howing
1305	10	4.75"	304-4	3-263	
1310	15	~5.8"	321-0	3222	
13/2/3/2	2	5.5"	333	2.002	Adjust QV, ~ Zgom @1312
1315	25 20	P	E -	2	
1370	2530 20	5.00	343.3	1-928	
	30 35	4.75"	352.9	1.969	
1330	35	4.75"	362.6	1.97-8	
1335	40	~ 4.6"	372.7	1.553	
1340	45	21	382.4	1.961	
1345	50	4.75"	392.3	1.936	
1350	.55	4.75"	402.0	1.936	Creepins back UP?
1355	60	4.7511	411.6	1.928	
1400	65	4-7-5"	471.0	1.920	
1406	71	5.00"	432.5	1.920	
1410	75	5.0011	440.5	1.895	
1415	86	C 11	449.7	1-862	
1420	65	C 11	459.4	1-854	
1425	50	~5.1"	468.4	1.854	
1430	95	11	477.7	1.838	na to bring WL to 6", an 250
1435	100	111	11097	7 541	
1440	105	5.511	499.1	1.578	Va to maintain 6" WC,

00 ~ 1-6 50m

Project	Santiann	
Site ID	RC-TP-2	_

Page Z of Z

Date 10/29/20

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
	(min)	(ft)	(xgal)	gpm	
14 43	108				100 to maintain WC, 0~1.85 ppn
1445	110	5.5"	507.5	1.862	
1450	115	5.5 "	516-8	1.838	
1455	120	5.5"	526-1	1-821	
1500	125	5.511	535.1	1.829	
1505	130	5.511	545.1*	1.796	Klote reading, siphon stopped
1515	140	5.511	562-6	1.756	
1520	145	5.511	572.6	1.755	Siphon restarted, still losing some
1525	150	5-511	580-1	1.755	pressure
1530	155	5.5"	588-7	1.739	
1535	160	5.5"	597.5	1.73	open volve slightly to maintain v
1540	165	5-7511	606.6	1.796	
1545	170	5.7511	615.3	1.772	
550	175	5.7-511	624.3	1,739	
555	180	~5.811	632.9	1.739	
1600	180	£ [6415	1.714	water off
			642.9		Etimal value
			y		
	*				
		55/5			
		94			

Project Santam Site ID Freres	464.010	Page (of
Test ID	FR-TP-31	
Test Start	0900	Pit Area 1.5 X 3 ft
Test Stop		PIL Area
Initial Water Level		
Final Water Level		_
Measuring Point Descrip.		
Remarks		

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
11/3/20	(min)	(ft)	(xgal)	(gpm)	
0857	pre test	0	1560.3	٥	
0500	0	0		~32.7	water on, value fully open
0905	5	3.75"	1574.	7.76	
0910	10	4.5"	1587.8	7.719	10 to 2.5 gpm @ 911
0916	16	4511	1604.9	7.480	
6520	20	4.5"	1614.2	7.447	
0975	25	4.5"	1624.4	2.447	
0930	30	4.75"	1636.7	2.431	
0935	35	4.75"	1648.8	2.406	
0940	40	4.15)	1660.7	2.390	
0945	45	4.75"	1672.7	2.365	
6950	50	4.75"	1684.5	2.373	
0955	55	4.75"	1696.3	2.324	
0000	60	4.75"	1708.4	2.307	10 to 290m @ 1001
1610	7-0	4.25"	1729.8	2644	
1017	77	4.25"	1744.5	2.027	
1070	80	4.25"	1749.8	1.994	
1075	85	4.0011	1759.9	1.98€	slightly 10 to ~ 2 gpm
1030	90	4.0011	1769.9	2.035	O .
1035	95	4.25"	17-80-1	2.007	
1040	950 100	4.5"	1790.3	2.118	WLT, Va to 1.9 gpm @ 1042
1045	105	4.54	1800.3	1.903	7.1
1050	110	~ 4.6 "	1809.8	1.887	
1055	115	-4.5"	1819.2	1.862	

Project Site ID Santiam 464.010 Freres, FIZ-TP-1

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
	(min)	(ft)	(x gal)	gpm	н20
[100	120	4.25"	1827.1	1.16	switched tanks @ 1057
ilos	125	4.5"	1836.5	1.805	Olloz adjust a to ~ 1.85 ypm
(110	(30	4.5"	1845.7	1.788	Jene
ills	135	4.5"	1854.5	1.7-55	
1120	140	4.75"	1863.2	1.747	1 10 17 gpm @ 112 1
1125	145	4.75"	1872	1.763	7
1130	150	4.7511	[88]	1.739	
1135	155	4.75"	1589.7	1722	slightly open value to maintain a
1140	160	4.75"	1898.3	1.763	, , ,
445	165	5 "	1907,2	1.739	
1150	170	1511	1916	1.72	
1155	175	S''	1924.4	1714	
# 1200	180	511	1973.3	1.747	water aff
			1933.6		4-final
12052		3"			
1705		7"	PI II		Α
1706		1.23"			
					×
				<u> </u>	

Site ID Sark F	464.610 at East	Page of
Test ID Test Start Test Stop Initial Water Level Final Water Level Measuring Point Descri	BF-TP-I	Pit Depth 1.8 ft Pit Area 1 x 2 ft @ deptn z x 4 ft @ Surface
	b.	

Date/Time	Elapsed Time	level	Totalizer Reading	Flow Rate	Comments
11/3/30	(min)	(ft) in	(xgal)	gpm	
1326	O	0	1933.6	0	pre-test
1330		*		~ 3.1	water an
1335	6	1.75"	1951.5	7.9	
1340	10	10"	1962,5	7.85)	lots of sloughing into hole
1345	15	1'0.75"	1976.6	7.727	16 to 2 gpm @ 1346
1350	20	1'1.5"	1987.5	2.002	set up siphon
1355	25	112.511	1997.5	2.002	V ce to 1. S gpm @ 1356
1400	30	1'3"	2005.7	1.541	
1405	35	113511	2013.5	1. 200	WLT, V@ to 1gpm@1406
1410	40	1 '3.75"	2019.4	1.07-1	
1415	45	113.75"	2025	1.071	
1420	So	1 411	2030,2	1.055	
1425	55	1141	2635.6	1.055	
1430	(e6	1'4"	7.040.7	1.055	Pit slopes inward but water surface
1435	65	1'4"	2045.7	1.055	drea is 2'x4'
1440	70	114"	70511	1.046	
1445	75	1 4.25"	2056.4	1,030	VQ to 0.8 50m @ 1446
1450	80	1'4.25"	7060.6	0.808	2
1455	85	1'4"	7064.8	4.799	
1500	90	1'4"	7068.6	0.799	
1505	95	('4"	2072.6	0.783	
1510	100	11411	2076.le	0.7-99	Q1
1515		114	7080.4	0.799	₩.
1520		1'3.75"	2084.6	0.175	

Project Santiam 4(04.010
Site ID Bark Flat BAST BF-TP-

Date/Time	Elapsed Time	Water Depth	Totalizer Reading	Flow Rate	Comments
	(min)	(ft)	(xgal)	gpm	
1525	115	1'3.75"	2088.1	0.775	
1530	120	1'3.75"	7092-2	U.7-66	10 back to 0.8 gpm C1532
1535	175	1'3.75"	2096.1	0.824	7,000
1540	130	113.511	2100.2	0.808	
1545	135	1'3.5"	7104.2	0.799	
1550	140	1'3.5"	7108.2	808.0	
1855	145	113.54	2112,3	0.832	-
1600	150	1'3.5"	2116.3	0.783	
16 \$10	160	1'3.511	2124.3	6.799	- V
1615	165	1'3.5"	2128.3	0.791	
1620	170	1'3.5"	2132.3	6.785	16 back to 0-8 som
6027	177	1'3-5"	7.138.0	0.808	3)
1630	180	1'3.75"	2140-4	0.824	Miter off
			2141.0		- final
1635		1'3"		4:	
1640	74-2	1'2-5"			la .
1646	1.5	11.5"	4	¥	
			N .		
					Th.
					*
					S (1)
			L.		
					<u> </u>
		6			